Loading…

A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion

We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L 2 criterion. In addition to introducing an algorithm for performing L 2 E regression, our framework enables robust regression with the L 2 criterion for...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics 2022, Vol.31 (4), p.1051-1062
Main Authors: Chi, Jocelyn T., Chi, Eric C.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1062
container_issue 4
container_start_page 1051
container_title Journal of computational and graphical statistics
container_volume 31
creator Chi, Jocelyn T.
Chi, Eric C.
description We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L 2 criterion. In addition to introducing an algorithm for performing L 2 E regression, our framework enables robust regression with the L 2 criterion for additional structural constraints, works without requiring complex tuning procedures on the precision parameter, can be used to identify heterogeneous subpopulations, and can incorporate readily available nonrobust structured regression solvers. We provide convergence guarantees for the framework and demonstrate its flexibility with some examples. Supplementary materials for this article are available online.
doi_str_mv 10.1080/10618600.2022.2035232
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2771639388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738689002</sourcerecordid><originalsourceid>FETCH-LOGICAL-i375t-1ac69ab6188034eb04d16728f3ab9f8aaf0c60dbb97b36714b6c915a10d06ad3</originalsourceid><addsrcrecordid>eNpdkU-LFDEQxYMo7h_9CELAi5deK8l0On0Rl8FxhQFhXa-GSnd6J2t3Z6ykXebbm2HHg16SUPnxePUeY28EXAkw8F6AFkYDXEmQshyqlko-Y-eiVk0lG1E_L-_CVEfojF2k9AAAQrfNS3amdCOFUfqc_bjm35OnakPBz_144Os47ZeMOcQZR74hnPxjpJ98iMRvo1tS5t8yLV1eyPf81t-TT6nA_DHkHc87z7eSrylkT2X6ir0YcEz-9em-ZHebT3frm2r79fOX9fW2CqqpcyWw0y26spEBtfIOVr0oFs2g0LWDQRyg09A71zaueBcrp7tW1CigB429umQfnmT3i5t83_k5E452T2FCOtiIwf77M4edvY-_bWuMlkoVgXcnAYq_Fp-ynULq_Dji7OOSrGwaoVWrjCno2__Qh7hQCetIKaNNCyAL9fGJCnNJbsKS4djbjIcx0kA4dyFZJcAeu7R_u7THLu2pS_UHhsiRtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738689002</pqid></control><display><type>article</type><title>A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion</title><source>Taylor and Francis Science and Technology Collection</source><creator>Chi, Jocelyn T. ; Chi, Eric C.</creator><creatorcontrib>Chi, Jocelyn T. ; Chi, Eric C.</creatorcontrib><description>We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L 2 criterion. In addition to introducing an algorithm for performing L 2 E regression, our framework enables robust regression with the L 2 criterion for additional structural constraints, works without requiring complex tuning procedures on the precision parameter, can be used to identify heterogeneous subpopulations, and can incorporate readily available nonrobust structured regression solvers. We provide convergence guarantees for the framework and demonstrate its flexibility with some examples. Supplementary materials for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2022.2035232</identifier><identifier>PMID: 36721836</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Algorithms ; Block-relaxation ; Convex optimization ; Criteria ; Minimum distance estimation ; Parameter identification ; Regression ; Regularization ; Robustness (mathematics)</subject><ispartof>Journal of computational and graphical statistics, 2022, Vol.31 (4), p.1051-1062</ispartof><rights>2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022</rights><rights>2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4647-0895 ; 0000-0001-6503-3661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Chi, Jocelyn T.</creatorcontrib><creatorcontrib>Chi, Eric C.</creatorcontrib><title>A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion</title><title>Journal of computational and graphical statistics</title><description>We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L 2 criterion. In addition to introducing an algorithm for performing L 2 E regression, our framework enables robust regression with the L 2 criterion for additional structural constraints, works without requiring complex tuning procedures on the precision parameter, can be used to identify heterogeneous subpopulations, and can incorporate readily available nonrobust structured regression solvers. We provide convergence guarantees for the framework and demonstrate its flexibility with some examples. Supplementary materials for this article are available online.</description><subject>Algorithms</subject><subject>Block-relaxation</subject><subject>Convex optimization</subject><subject>Criteria</subject><subject>Minimum distance estimation</subject><subject>Parameter identification</subject><subject>Regression</subject><subject>Regularization</subject><subject>Robustness (mathematics)</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU-LFDEQxYMo7h_9CELAi5deK8l0On0Rl8FxhQFhXa-GSnd6J2t3Z6ykXebbm2HHg16SUPnxePUeY28EXAkw8F6AFkYDXEmQshyqlko-Y-eiVk0lG1E_L-_CVEfojF2k9AAAQrfNS3amdCOFUfqc_bjm35OnakPBz_144Os47ZeMOcQZR74hnPxjpJ98iMRvo1tS5t8yLV1eyPf81t-TT6nA_DHkHc87z7eSrylkT2X6ir0YcEz-9em-ZHebT3frm2r79fOX9fW2CqqpcyWw0y26spEBtfIOVr0oFs2g0LWDQRyg09A71zaueBcrp7tW1CigB429umQfnmT3i5t83_k5E452T2FCOtiIwf77M4edvY-_bWuMlkoVgXcnAYq_Fp-ynULq_Dji7OOSrGwaoVWrjCno2__Qh7hQCetIKaNNCyAL9fGJCnNJbsKS4djbjIcx0kA4dyFZJcAeu7R_u7THLu2pS_UHhsiRtQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chi, Jocelyn T.</creator><creator>Chi, Eric C.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4647-0895</orcidid><orcidid>https://orcid.org/0000-0001-6503-3661</orcidid></search><sort><creationdate>2022</creationdate><title>A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion</title><author>Chi, Jocelyn T. ; Chi, Eric C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i375t-1ac69ab6188034eb04d16728f3ab9f8aaf0c60dbb97b36714b6c915a10d06ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Block-relaxation</topic><topic>Convex optimization</topic><topic>Criteria</topic><topic>Minimum distance estimation</topic><topic>Parameter identification</topic><topic>Regression</topic><topic>Regularization</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Jocelyn T.</creatorcontrib><creatorcontrib>Chi, Eric C.</creatorcontrib><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Jocelyn T.</au><au>Chi, Eric C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2022</date><risdate>2022</risdate><volume>31</volume><issue>4</issue><spage>1051</spage><epage>1062</epage><pages>1051-1062</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L 2 criterion. In addition to introducing an algorithm for performing L 2 E regression, our framework enables robust regression with the L 2 criterion for additional structural constraints, works without requiring complex tuning procedures on the precision parameter, can be used to identify heterogeneous subpopulations, and can incorporate readily available nonrobust structured regression solvers. We provide convergence guarantees for the framework and demonstrate its flexibility with some examples. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><pmid>36721836</pmid><doi>10.1080/10618600.2022.2035232</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4647-0895</orcidid><orcidid>https://orcid.org/0000-0001-6503-3661</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 2022, Vol.31 (4), p.1051-1062
issn 1061-8600
1537-2715
language eng
recordid cdi_proquest_miscellaneous_2771639388
source Taylor and Francis Science and Technology Collection
subjects Algorithms
Block-relaxation
Convex optimization
Criteria
Minimum distance estimation
Parameter identification
Regression
Regularization
Robustness (mathematics)
title A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T10%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20User-Friendly%20Computational%20Framework%20for%20Robust%20Structured%20Regression%20with%20the%20L2%20Criterion&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Chi,%20Jocelyn%20T.&rft.date=2022&rft.volume=31&rft.issue=4&rft.spage=1051&rft.epage=1062&rft.pages=1051-1062&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2022.2035232&rft_dat=%3Cproquest_pubme%3E2738689002%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i375t-1ac69ab6188034eb04d16728f3ab9f8aaf0c60dbb97b36714b6c915a10d06ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2738689002&rft_id=info:pmid/36721836&rfr_iscdi=true