Loading…
A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion
We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L 2 criterion. In addition to introducing an algorithm for performing L 2 E regression, our framework enables robust regression with the L 2 criterion for...
Saved in:
Published in: | Journal of computational and graphical statistics 2022, Vol.31 (4), p.1051-1062 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1062 |
container_issue | 4 |
container_start_page | 1051 |
container_title | Journal of computational and graphical statistics |
container_volume | 31 |
creator | Chi, Jocelyn T. Chi, Eric C. |
description | We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L
2
criterion. In addition to introducing an algorithm for performing L
2
E regression, our framework enables robust regression with the L
2
criterion for additional structural constraints, works without requiring complex tuning procedures on the precision parameter, can be used to identify heterogeneous subpopulations, and can incorporate readily available nonrobust structured regression solvers. We provide convergence guarantees for the framework and demonstrate its flexibility with some examples.
Supplementary materials
for this article are available online. |
doi_str_mv | 10.1080/10618600.2022.2035232 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2771639388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738689002</sourcerecordid><originalsourceid>FETCH-LOGICAL-i375t-1ac69ab6188034eb04d16728f3ab9f8aaf0c60dbb97b36714b6c915a10d06ad3</originalsourceid><addsrcrecordid>eNpdkU-LFDEQxYMo7h_9CELAi5deK8l0On0Rl8FxhQFhXa-GSnd6J2t3Z6ykXebbm2HHg16SUPnxePUeY28EXAkw8F6AFkYDXEmQshyqlko-Y-eiVk0lG1E_L-_CVEfojF2k9AAAQrfNS3amdCOFUfqc_bjm35OnakPBz_144Os47ZeMOcQZR74hnPxjpJ98iMRvo1tS5t8yLV1eyPf81t-TT6nA_DHkHc87z7eSrylkT2X6ir0YcEz-9em-ZHebT3frm2r79fOX9fW2CqqpcyWw0y26spEBtfIOVr0oFs2g0LWDQRyg09A71zaueBcrp7tW1CigB429umQfnmT3i5t83_k5E452T2FCOtiIwf77M4edvY-_bWuMlkoVgXcnAYq_Fp-ynULq_Dji7OOSrGwaoVWrjCno2__Qh7hQCetIKaNNCyAL9fGJCnNJbsKS4djbjIcx0kA4dyFZJcAeu7R_u7THLu2pS_UHhsiRtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738689002</pqid></control><display><type>article</type><title>A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion</title><source>Taylor and Francis Science and Technology Collection</source><creator>Chi, Jocelyn T. ; Chi, Eric C.</creator><creatorcontrib>Chi, Jocelyn T. ; Chi, Eric C.</creatorcontrib><description>We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L
2
criterion. In addition to introducing an algorithm for performing L
2
E regression, our framework enables robust regression with the L
2
criterion for additional structural constraints, works without requiring complex tuning procedures on the precision parameter, can be used to identify heterogeneous subpopulations, and can incorporate readily available nonrobust structured regression solvers. We provide convergence guarantees for the framework and demonstrate its flexibility with some examples.
Supplementary materials
for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2022.2035232</identifier><identifier>PMID: 36721836</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Algorithms ; Block-relaxation ; Convex optimization ; Criteria ; Minimum distance estimation ; Parameter identification ; Regression ; Regularization ; Robustness (mathematics)</subject><ispartof>Journal of computational and graphical statistics, 2022, Vol.31 (4), p.1051-1062</ispartof><rights>2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022</rights><rights>2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4647-0895 ; 0000-0001-6503-3661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Chi, Jocelyn T.</creatorcontrib><creatorcontrib>Chi, Eric C.</creatorcontrib><title>A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion</title><title>Journal of computational and graphical statistics</title><description>We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L
2
criterion. In addition to introducing an algorithm for performing L
2
E regression, our framework enables robust regression with the L
2
criterion for additional structural constraints, works without requiring complex tuning procedures on the precision parameter, can be used to identify heterogeneous subpopulations, and can incorporate readily available nonrobust structured regression solvers. We provide convergence guarantees for the framework and demonstrate its flexibility with some examples.
Supplementary materials
for this article are available online.</description><subject>Algorithms</subject><subject>Block-relaxation</subject><subject>Convex optimization</subject><subject>Criteria</subject><subject>Minimum distance estimation</subject><subject>Parameter identification</subject><subject>Regression</subject><subject>Regularization</subject><subject>Robustness (mathematics)</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU-LFDEQxYMo7h_9CELAi5deK8l0On0Rl8FxhQFhXa-GSnd6J2t3Z6ykXebbm2HHg16SUPnxePUeY28EXAkw8F6AFkYDXEmQshyqlko-Y-eiVk0lG1E_L-_CVEfojF2k9AAAQrfNS3amdCOFUfqc_bjm35OnakPBz_144Os47ZeMOcQZR74hnPxjpJ98iMRvo1tS5t8yLV1eyPf81t-TT6nA_DHkHc87z7eSrylkT2X6ir0YcEz-9em-ZHebT3frm2r79fOX9fW2CqqpcyWw0y26spEBtfIOVr0oFs2g0LWDQRyg09A71zaueBcrp7tW1CigB429umQfnmT3i5t83_k5E452T2FCOtiIwf77M4edvY-_bWuMlkoVgXcnAYq_Fp-ynULq_Dji7OOSrGwaoVWrjCno2__Qh7hQCetIKaNNCyAL9fGJCnNJbsKS4djbjIcx0kA4dyFZJcAeu7R_u7THLu2pS_UHhsiRtQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chi, Jocelyn T.</creator><creator>Chi, Eric C.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4647-0895</orcidid><orcidid>https://orcid.org/0000-0001-6503-3661</orcidid></search><sort><creationdate>2022</creationdate><title>A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion</title><author>Chi, Jocelyn T. ; Chi, Eric C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i375t-1ac69ab6188034eb04d16728f3ab9f8aaf0c60dbb97b36714b6c915a10d06ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Block-relaxation</topic><topic>Convex optimization</topic><topic>Criteria</topic><topic>Minimum distance estimation</topic><topic>Parameter identification</topic><topic>Regression</topic><topic>Regularization</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Jocelyn T.</creatorcontrib><creatorcontrib>Chi, Eric C.</creatorcontrib><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Jocelyn T.</au><au>Chi, Eric C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2022</date><risdate>2022</risdate><volume>31</volume><issue>4</issue><spage>1051</spage><epage>1062</epage><pages>1051-1062</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods with the L
2
criterion. In addition to introducing an algorithm for performing L
2
E regression, our framework enables robust regression with the L
2
criterion for additional structural constraints, works without requiring complex tuning procedures on the precision parameter, can be used to identify heterogeneous subpopulations, and can incorporate readily available nonrobust structured regression solvers. We provide convergence guarantees for the framework and demonstrate its flexibility with some examples.
Supplementary materials
for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><pmid>36721836</pmid><doi>10.1080/10618600.2022.2035232</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4647-0895</orcidid><orcidid>https://orcid.org/0000-0001-6503-3661</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8600 |
ispartof | Journal of computational and graphical statistics, 2022, Vol.31 (4), p.1051-1062 |
issn | 1061-8600 1537-2715 |
language | eng |
recordid | cdi_proquest_miscellaneous_2771639388 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms Block-relaxation Convex optimization Criteria Minimum distance estimation Parameter identification Regression Regularization Robustness (mathematics) |
title | A User-Friendly Computational Framework for Robust Structured Regression with the L2 Criterion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T10%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20User-Friendly%20Computational%20Framework%20for%20Robust%20Structured%20Regression%20with%20the%20L2%20Criterion&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Chi,%20Jocelyn%20T.&rft.date=2022&rft.volume=31&rft.issue=4&rft.spage=1051&rft.epage=1062&rft.pages=1051-1062&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2022.2035232&rft_dat=%3Cproquest_pubme%3E2738689002%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i375t-1ac69ab6188034eb04d16728f3ab9f8aaf0c60dbb97b36714b6c915a10d06ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2738689002&rft_id=info:pmid/36721836&rfr_iscdi=true |