Loading…
Soft computing for greenhouse climate control
The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and co...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2000-12, Vol.8 (6), p.753-760 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83 |
container_end_page | 760 |
container_issue | 6 |
container_start_page | 753 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 8 |
creator | Caponetto, R. Fortuna, L. Nunnari, G. Occhipinti, L. Xibilia, M.G. |
description | The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and control using traditional techniques. The paper proposes a framework for the development of soft computing-based controllers in modern greenhouses. |
doi_str_mv | 10.1109/91.890333 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27717093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>890333</ieee_id><sourcerecordid>28607576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQpDKxMEQOIIcWXc3L2iCq-pEoMwByljl1SpXGxk4F_j6tUDAwwnaV7ZN_5Zewc-AyAq1sFM6k4Ih6wCSgBKecoDuOZF5gWxItjdhLCmnMQOcgJS1-d7RPtNtuhb7pVYp1PVt6Y7sMNwSS6bTZVH6vreu_aU3ZkqzaYs32dsveH-7f5U7p4eXye3y1SjQX1qYzvF1gbIgs2R4Eiz0hqRC1MxjUhWCWkUoJqDbpSJKxZ1porlXOxrCRO2fV479a7z8GEvtw0QZu2rToT5yqllAAoIYvy6k-ZyYJTTsX_kAiIK4zw8hdcu8F3cd1SARGSFDt0MyLtXQje2HLr40_5rxJ4uQsi2nIMItqL0TbGmB-3b34DRYt_3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917737843</pqid></control><display><type>article</type><title>Soft computing for greenhouse climate control</title><source>IEEE Xplore (Online service)</source><creator>Caponetto, R. ; Fortuna, L. ; Nunnari, G. ; Occhipinti, L. ; Xibilia, M.G.</creator><creatorcontrib>Caponetto, R. ; Fortuna, L. ; Nunnari, G. ; Occhipinti, L. ; Xibilia, M.G.</creatorcontrib><description>The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and control using traditional techniques. The paper proposes a framework for the development of soft computing-based controllers in modern greenhouses.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/91.890333</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Control systems ; Expert systems ; Fuzzy logic ; Humidity control ; Nonlinear control systems ; PD control ; Plants (biology) ; Proportional control ; Temperature control</subject><ispartof>IEEE transactions on fuzzy systems, 2000-12, Vol.8 (6), p.753-760</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83</citedby><cites>FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/890333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Caponetto, R.</creatorcontrib><creatorcontrib>Fortuna, L.</creatorcontrib><creatorcontrib>Nunnari, G.</creatorcontrib><creatorcontrib>Occhipinti, L.</creatorcontrib><creatorcontrib>Xibilia, M.G.</creatorcontrib><title>Soft computing for greenhouse climate control</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and control using traditional techniques. The paper proposes a framework for the development of soft computing-based controllers in modern greenhouses.</description><subject>Artificial intelligence</subject><subject>Control systems</subject><subject>Expert systems</subject><subject>Fuzzy logic</subject><subject>Humidity control</subject><subject>Nonlinear control systems</subject><subject>PD control</subject><subject>Plants (biology)</subject><subject>Proportional control</subject><subject>Temperature control</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0T1PwzAQBmALgUQpDKxMEQOIIcWXc3L2iCq-pEoMwByljl1SpXGxk4F_j6tUDAwwnaV7ZN_5Zewc-AyAq1sFM6k4Ih6wCSgBKecoDuOZF5gWxItjdhLCmnMQOcgJS1-d7RPtNtuhb7pVYp1PVt6Y7sMNwSS6bTZVH6vreu_aU3ZkqzaYs32dsveH-7f5U7p4eXye3y1SjQX1qYzvF1gbIgs2R4Eiz0hqRC1MxjUhWCWkUoJqDbpSJKxZ1porlXOxrCRO2fV479a7z8GEvtw0QZu2rToT5yqllAAoIYvy6k-ZyYJTTsX_kAiIK4zw8hdcu8F3cd1SARGSFDt0MyLtXQje2HLr40_5rxJ4uQsi2nIMItqL0TbGmB-3b34DRYt_3A</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Caponetto, R.</creator><creator>Fortuna, L.</creator><creator>Nunnari, G.</creator><creator>Occhipinti, L.</creator><creator>Xibilia, M.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20001201</creationdate><title>Soft computing for greenhouse climate control</title><author>Caponetto, R. ; Fortuna, L. ; Nunnari, G. ; Occhipinti, L. ; Xibilia, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial intelligence</topic><topic>Control systems</topic><topic>Expert systems</topic><topic>Fuzzy logic</topic><topic>Humidity control</topic><topic>Nonlinear control systems</topic><topic>PD control</topic><topic>Plants (biology)</topic><topic>Proportional control</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caponetto, R.</creatorcontrib><creatorcontrib>Fortuna, L.</creatorcontrib><creatorcontrib>Nunnari, G.</creatorcontrib><creatorcontrib>Occhipinti, L.</creatorcontrib><creatorcontrib>Xibilia, M.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caponetto, R.</au><au>Fortuna, L.</au><au>Nunnari, G.</au><au>Occhipinti, L.</au><au>Xibilia, M.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft computing for greenhouse climate control</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2000-12-01</date><risdate>2000</risdate><volume>8</volume><issue>6</issue><spage>753</spage><epage>760</epage><pages>753-760</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and control using traditional techniques. The paper proposes a framework for the development of soft computing-based controllers in modern greenhouses.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/91.890333</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2000-12, Vol.8 (6), p.753-760 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_miscellaneous_27717093 |
source | IEEE Xplore (Online service) |
subjects | Artificial intelligence Control systems Expert systems Fuzzy logic Humidity control Nonlinear control systems PD control Plants (biology) Proportional control Temperature control |
title | Soft computing for greenhouse climate control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20computing%20for%20greenhouse%20climate%20control&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Caponetto,%20R.&rft.date=2000-12-01&rft.volume=8&rft.issue=6&rft.spage=753&rft.epage=760&rft.pages=753-760&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/91.890333&rft_dat=%3Cproquest_ieee_%3E28607576%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917737843&rft_id=info:pmid/&rft_ieee_id=890333&rfr_iscdi=true |