Loading…

A single dose of exercise stimulates skeletal muscle mitochondrial plasticity in myotonic dystrophy type 1

Aim Myotonic dystrophy type 1 (DM1) is the second most common muscular dystrophy after Duchenne and is the most prevalent muscular dystrophy in adults. DM1 patients that participate in aerobic exercise training experience several physiological benefits concomitant with improved muscle mitochondrial...

Full description

Saved in:
Bibliographic Details
Published in:Acta Physiologica 2023-04, Vol.237 (4), p.e13943-n/a
Main Authors: Mikhail, Andrew I., Manta, Alexander, Ng, Sean Y., Osborne, Aislin K., Mattina, Stephanie R., Mackie, Mark R., Ljubicic, Vladimir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3933-f1715280dbe07f0753f10c112c52d890d8ed1065bf4fd13fb5dbecea2bb765d83
cites cdi_FETCH-LOGICAL-c3933-f1715280dbe07f0753f10c112c52d890d8ed1065bf4fd13fb5dbecea2bb765d83
container_end_page n/a
container_issue 4
container_start_page e13943
container_title Acta Physiologica
container_volume 237
creator Mikhail, Andrew I.
Manta, Alexander
Ng, Sean Y.
Osborne, Aislin K.
Mattina, Stephanie R.
Mackie, Mark R.
Ljubicic, Vladimir
description Aim Myotonic dystrophy type 1 (DM1) is the second most common muscular dystrophy after Duchenne and is the most prevalent muscular dystrophy in adults. DM1 patients that participate in aerobic exercise training experience several physiological benefits concomitant with improved muscle mitochondrial function without alterations in typical DM1‐specific disease mechanisms, which suggests that correcting organelle health is key to ameliorate the DM1 pathology. However, our understanding of the molecular mechanisms of mitochondrial turnover and dynamics in DM1 skeletal muscle is lacking. Methods Skeletal muscle tissue was sampled from healthy and DM1 mice under sedentary conditions and at several recovery time points following an exhaustive treadmill run. Results We demonstrate that DM1 patients exhibit an imbalance in the transcriptional apparatus for mitochondrial turnover and dynamics in skeletal muscle. Additionally, DM1 mice displayed elevated expression of autophagy and mitophagy regulators. A single dose of exercise successfully enhanced canonical exercise molecular pathways and skeletal muscle mitochondrial biogenesis despite failing to alter the cellular pathology in DM1 mice. However, treadmill running stimulated coordinated organelle fusion and fission signaling, as well as improved alternative splicing of Optic atrophy 1. Exercise also evoked autophagy and mitophagy pathways in DM1 skeletal muscle resulting in the normalized expression of autophagy‐ and lysosome‐related machinery responsible for the clearance of dysfunctional organelles. Conclusion Collectively, our data indicate that mitochondrial dynamics and turnover processes in DM1 skeletal muscle are initiated with a single dose of exercise, which may underlie the adaptive benefits previously documented in DM1 mice and patients.
doi_str_mv 10.1111/apha.13943
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2771942186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771942186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3933-f1715280dbe07f0753f10c112c52d890d8ed1065bf4fd13fb5dbecea2bb765d83</originalsourceid><addsrcrecordid>eNp90cFqFTEUBuAgii21Gx9AAm5EuDUnmZlklpeiVijoQtdDJjnx5pqZjEmGOm9v6q1duDCbHMLHzyE_IS-BXUE97_Ry0Fcg-kY8IecgG7UDCd3Tx5mpM3KZ85ExBhxEw_lzciY6yTvWiHNy3NPs5-8BqY0ZaXQUf2Eyvs65-GkNumCm-QcGLDrQac2m2smXaA5xtsnXxyXoao0vG_UznbZY4uwNtVsuKS6HjZZtQQovyDOnQ8bLh_uCfPvw_uv1ze7288dP1_vbnRG9EDtX92-5YnZEJh2TrXDADAA3LbeqZ1ahBda1o2ucBeHGtkqDmo-j7FqrxAV5c8pdUvy5Yi7D5LPBEPSMcc0DlxL6hoPqKn39Dz3GNc11u6pUr5TsZV_V25MyKeac0A1L8pNO2wBsuC9huC9h-FNCxa8eItdxQvtI_355BXACdz7g9p-oYf_lZn8K_Q1E5pKh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789887979</pqid></control><display><type>article</type><title>A single dose of exercise stimulates skeletal muscle mitochondrial plasticity in myotonic dystrophy type 1</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>Wiley</source><creator>Mikhail, Andrew I. ; Manta, Alexander ; Ng, Sean Y. ; Osborne, Aislin K. ; Mattina, Stephanie R. ; Mackie, Mark R. ; Ljubicic, Vladimir</creator><creatorcontrib>Mikhail, Andrew I. ; Manta, Alexander ; Ng, Sean Y. ; Osborne, Aislin K. ; Mattina, Stephanie R. ; Mackie, Mark R. ; Ljubicic, Vladimir</creatorcontrib><description>Aim Myotonic dystrophy type 1 (DM1) is the second most common muscular dystrophy after Duchenne and is the most prevalent muscular dystrophy in adults. DM1 patients that participate in aerobic exercise training experience several physiological benefits concomitant with improved muscle mitochondrial function without alterations in typical DM1‐specific disease mechanisms, which suggests that correcting organelle health is key to ameliorate the DM1 pathology. However, our understanding of the molecular mechanisms of mitochondrial turnover and dynamics in DM1 skeletal muscle is lacking. Methods Skeletal muscle tissue was sampled from healthy and DM1 mice under sedentary conditions and at several recovery time points following an exhaustive treadmill run. Results We demonstrate that DM1 patients exhibit an imbalance in the transcriptional apparatus for mitochondrial turnover and dynamics in skeletal muscle. Additionally, DM1 mice displayed elevated expression of autophagy and mitophagy regulators. A single dose of exercise successfully enhanced canonical exercise molecular pathways and skeletal muscle mitochondrial biogenesis despite failing to alter the cellular pathology in DM1 mice. However, treadmill running stimulated coordinated organelle fusion and fission signaling, as well as improved alternative splicing of Optic atrophy 1. Exercise also evoked autophagy and mitophagy pathways in DM1 skeletal muscle resulting in the normalized expression of autophagy‐ and lysosome‐related machinery responsible for the clearance of dysfunctional organelles. Conclusion Collectively, our data indicate that mitochondrial dynamics and turnover processes in DM1 skeletal muscle are initiated with a single dose of exercise, which may underlie the adaptive benefits previously documented in DM1 mice and patients.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.13943</identifier><identifier>PMID: 36726043</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Alternative splicing ; AMP‐activated protein kinase ; Animals ; Atrophy ; Autophagy ; biogenesis ; dynamics ; Exercise ; Fitness equipment ; Mice ; Mitochondria ; Mitochondria - metabolism ; mitophagy ; Molecular modelling ; Muscle, Skeletal - metabolism ; Muscular Dystrophies - metabolism ; Muscular Dystrophies - pathology ; Muscular dystrophy ; Musculoskeletal system ; Myotonic dystrophy ; Myotonic Dystrophy - genetics ; Myotonic Dystrophy - metabolism ; Myotonic Dystrophy - pathology ; Optic atrophy ; Organelles ; Pathology ; Physical training ; Signal Transduction ; Skeletal muscle</subject><ispartof>Acta Physiologica, 2023-04, Vol.237 (4), p.e13943-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Physiological Society.</rights><rights>2023 The Authors. Acta Physiologica published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Physiological Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3933-f1715280dbe07f0753f10c112c52d890d8ed1065bf4fd13fb5dbecea2bb765d83</citedby><cites>FETCH-LOGICAL-c3933-f1715280dbe07f0753f10c112c52d890d8ed1065bf4fd13fb5dbecea2bb765d83</cites><orcidid>0000-0001-8977-2055 ; 0000-0002-4592-4093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36726043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhail, Andrew I.</creatorcontrib><creatorcontrib>Manta, Alexander</creatorcontrib><creatorcontrib>Ng, Sean Y.</creatorcontrib><creatorcontrib>Osborne, Aislin K.</creatorcontrib><creatorcontrib>Mattina, Stephanie R.</creatorcontrib><creatorcontrib>Mackie, Mark R.</creatorcontrib><creatorcontrib>Ljubicic, Vladimir</creatorcontrib><title>A single dose of exercise stimulates skeletal muscle mitochondrial plasticity in myotonic dystrophy type 1</title><title>Acta Physiologica</title><addtitle>Acta Physiol (Oxf)</addtitle><description>Aim Myotonic dystrophy type 1 (DM1) is the second most common muscular dystrophy after Duchenne and is the most prevalent muscular dystrophy in adults. DM1 patients that participate in aerobic exercise training experience several physiological benefits concomitant with improved muscle mitochondrial function without alterations in typical DM1‐specific disease mechanisms, which suggests that correcting organelle health is key to ameliorate the DM1 pathology. However, our understanding of the molecular mechanisms of mitochondrial turnover and dynamics in DM1 skeletal muscle is lacking. Methods Skeletal muscle tissue was sampled from healthy and DM1 mice under sedentary conditions and at several recovery time points following an exhaustive treadmill run. Results We demonstrate that DM1 patients exhibit an imbalance in the transcriptional apparatus for mitochondrial turnover and dynamics in skeletal muscle. Additionally, DM1 mice displayed elevated expression of autophagy and mitophagy regulators. A single dose of exercise successfully enhanced canonical exercise molecular pathways and skeletal muscle mitochondrial biogenesis despite failing to alter the cellular pathology in DM1 mice. However, treadmill running stimulated coordinated organelle fusion and fission signaling, as well as improved alternative splicing of Optic atrophy 1. Exercise also evoked autophagy and mitophagy pathways in DM1 skeletal muscle resulting in the normalized expression of autophagy‐ and lysosome‐related machinery responsible for the clearance of dysfunctional organelles. Conclusion Collectively, our data indicate that mitochondrial dynamics and turnover processes in DM1 skeletal muscle are initiated with a single dose of exercise, which may underlie the adaptive benefits previously documented in DM1 mice and patients.</description><subject>Alternative splicing</subject><subject>AMP‐activated protein kinase</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Autophagy</subject><subject>biogenesis</subject><subject>dynamics</subject><subject>Exercise</subject><subject>Fitness equipment</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitophagy</subject><subject>Molecular modelling</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular Dystrophies - metabolism</subject><subject>Muscular Dystrophies - pathology</subject><subject>Muscular dystrophy</subject><subject>Musculoskeletal system</subject><subject>Myotonic dystrophy</subject><subject>Myotonic Dystrophy - genetics</subject><subject>Myotonic Dystrophy - metabolism</subject><subject>Myotonic Dystrophy - pathology</subject><subject>Optic atrophy</subject><subject>Organelles</subject><subject>Pathology</subject><subject>Physical training</subject><subject>Signal Transduction</subject><subject>Skeletal muscle</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90cFqFTEUBuAgii21Gx9AAm5EuDUnmZlklpeiVijoQtdDJjnx5pqZjEmGOm9v6q1duDCbHMLHzyE_IS-BXUE97_Ry0Fcg-kY8IecgG7UDCd3Tx5mpM3KZ85ExBhxEw_lzciY6yTvWiHNy3NPs5-8BqY0ZaXQUf2Eyvs65-GkNumCm-QcGLDrQac2m2smXaA5xtsnXxyXoao0vG_UznbZY4uwNtVsuKS6HjZZtQQovyDOnQ8bLh_uCfPvw_uv1ze7288dP1_vbnRG9EDtX92-5YnZEJh2TrXDADAA3LbeqZ1ahBda1o2ucBeHGtkqDmo-j7FqrxAV5c8pdUvy5Yi7D5LPBEPSMcc0DlxL6hoPqKn39Dz3GNc11u6pUr5TsZV_V25MyKeac0A1L8pNO2wBsuC9huC9h-FNCxa8eItdxQvtI_355BXACdz7g9p-oYf_lZn8K_Q1E5pKh</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Mikhail, Andrew I.</creator><creator>Manta, Alexander</creator><creator>Ng, Sean Y.</creator><creator>Osborne, Aislin K.</creator><creator>Mattina, Stephanie R.</creator><creator>Mackie, Mark R.</creator><creator>Ljubicic, Vladimir</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8977-2055</orcidid><orcidid>https://orcid.org/0000-0002-4592-4093</orcidid></search><sort><creationdate>202304</creationdate><title>A single dose of exercise stimulates skeletal muscle mitochondrial plasticity in myotonic dystrophy type 1</title><author>Mikhail, Andrew I. ; Manta, Alexander ; Ng, Sean Y. ; Osborne, Aislin K. ; Mattina, Stephanie R. ; Mackie, Mark R. ; Ljubicic, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3933-f1715280dbe07f0753f10c112c52d890d8ed1065bf4fd13fb5dbecea2bb765d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative splicing</topic><topic>AMP‐activated protein kinase</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Autophagy</topic><topic>biogenesis</topic><topic>dynamics</topic><topic>Exercise</topic><topic>Fitness equipment</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitophagy</topic><topic>Molecular modelling</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular Dystrophies - metabolism</topic><topic>Muscular Dystrophies - pathology</topic><topic>Muscular dystrophy</topic><topic>Musculoskeletal system</topic><topic>Myotonic dystrophy</topic><topic>Myotonic Dystrophy - genetics</topic><topic>Myotonic Dystrophy - metabolism</topic><topic>Myotonic Dystrophy - pathology</topic><topic>Optic atrophy</topic><topic>Organelles</topic><topic>Pathology</topic><topic>Physical training</topic><topic>Signal Transduction</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhail, Andrew I.</creatorcontrib><creatorcontrib>Manta, Alexander</creatorcontrib><creatorcontrib>Ng, Sean Y.</creatorcontrib><creatorcontrib>Osborne, Aislin K.</creatorcontrib><creatorcontrib>Mattina, Stephanie R.</creatorcontrib><creatorcontrib>Mackie, Mark R.</creatorcontrib><creatorcontrib>Ljubicic, Vladimir</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhail, Andrew I.</au><au>Manta, Alexander</au><au>Ng, Sean Y.</au><au>Osborne, Aislin K.</au><au>Mattina, Stephanie R.</au><au>Mackie, Mark R.</au><au>Ljubicic, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single dose of exercise stimulates skeletal muscle mitochondrial plasticity in myotonic dystrophy type 1</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol (Oxf)</addtitle><date>2023-04</date><risdate>2023</risdate><volume>237</volume><issue>4</issue><spage>e13943</spage><epage>n/a</epage><pages>e13943-n/a</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Aim Myotonic dystrophy type 1 (DM1) is the second most common muscular dystrophy after Duchenne and is the most prevalent muscular dystrophy in adults. DM1 patients that participate in aerobic exercise training experience several physiological benefits concomitant with improved muscle mitochondrial function without alterations in typical DM1‐specific disease mechanisms, which suggests that correcting organelle health is key to ameliorate the DM1 pathology. However, our understanding of the molecular mechanisms of mitochondrial turnover and dynamics in DM1 skeletal muscle is lacking. Methods Skeletal muscle tissue was sampled from healthy and DM1 mice under sedentary conditions and at several recovery time points following an exhaustive treadmill run. Results We demonstrate that DM1 patients exhibit an imbalance in the transcriptional apparatus for mitochondrial turnover and dynamics in skeletal muscle. Additionally, DM1 mice displayed elevated expression of autophagy and mitophagy regulators. A single dose of exercise successfully enhanced canonical exercise molecular pathways and skeletal muscle mitochondrial biogenesis despite failing to alter the cellular pathology in DM1 mice. However, treadmill running stimulated coordinated organelle fusion and fission signaling, as well as improved alternative splicing of Optic atrophy 1. Exercise also evoked autophagy and mitophagy pathways in DM1 skeletal muscle resulting in the normalized expression of autophagy‐ and lysosome‐related machinery responsible for the clearance of dysfunctional organelles. Conclusion Collectively, our data indicate that mitochondrial dynamics and turnover processes in DM1 skeletal muscle are initiated with a single dose of exercise, which may underlie the adaptive benefits previously documented in DM1 mice and patients.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36726043</pmid><doi>10.1111/apha.13943</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8977-2055</orcidid><orcidid>https://orcid.org/0000-0002-4592-4093</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-1708
ispartof Acta Physiologica, 2023-04, Vol.237 (4), p.e13943-n/a
issn 1748-1708
1748-1716
language eng
recordid cdi_proquest_miscellaneous_2771942186
source EBSCOhost SPORTDiscus with Full Text; Wiley
subjects Alternative splicing
AMP‐activated protein kinase
Animals
Atrophy
Autophagy
biogenesis
dynamics
Exercise
Fitness equipment
Mice
Mitochondria
Mitochondria - metabolism
mitophagy
Molecular modelling
Muscle, Skeletal - metabolism
Muscular Dystrophies - metabolism
Muscular Dystrophies - pathology
Muscular dystrophy
Musculoskeletal system
Myotonic dystrophy
Myotonic Dystrophy - genetics
Myotonic Dystrophy - metabolism
Myotonic Dystrophy - pathology
Optic atrophy
Organelles
Pathology
Physical training
Signal Transduction
Skeletal muscle
title A single dose of exercise stimulates skeletal muscle mitochondrial plasticity in myotonic dystrophy type 1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single%20dose%20of%20exercise%20stimulates%20skeletal%20muscle%20mitochondrial%20plasticity%20in%20myotonic%20dystrophy%20type%201&rft.jtitle=Acta%20Physiologica&rft.au=Mikhail,%20Andrew%20I.&rft.date=2023-04&rft.volume=237&rft.issue=4&rft.spage=e13943&rft.epage=n/a&rft.pages=e13943-n/a&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.13943&rft_dat=%3Cproquest_cross%3E2771942186%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3933-f1715280dbe07f0753f10c112c52d890d8ed1065bf4fd13fb5dbecea2bb765d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789887979&rft_id=info:pmid/36726043&rfr_iscdi=true