Loading…
Study of oxygen exchange and transport in mixed conducting cobaltates by electrochemical impedance spectroscopy
Oxygen diffusion is treated in a dense electronically conducting perovskite pellet blocked ionically on one surface, electronically on the other, and sealed on the cylindrical surface. Oxygen exchange at the electronically blocked surface is assigned first order reaction kinetics. An equivalent circ...
Saved in:
Published in: | Solid state ionics 2000-11, Vol.135 (1), p.613-618 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432t-2e38c561a558d0710d34344b4a43eb00b050fa7b0547f16e0aafb587029784503 |
---|---|
cites | |
container_end_page | 618 |
container_issue | 1 |
container_start_page | 613 |
container_title | Solid state ionics |
container_volume | 135 |
creator | Diethelm, Stefan Closset, Alexandre Van herle, Jan McEvoy, A.J Nisancioglu, Kemal |
description | Oxygen diffusion is treated in a dense electronically conducting perovskite pellet blocked ionically on one surface, electronically on the other, and sealed on the cylindrical surface. Oxygen exchange at the electronically blocked surface is assigned first order reaction kinetics. An equivalent circuit model is suggested for the cell impedance by the Laplace transform of Fick’s second law. The methodology thus developed for this technique is applied to determine the chemical diffusion and surface exchange coefficients of SrCo
0.5Fe
0.5O
3−
δ
interfaced with air in a solid state electrochemical cell employing a YSZ electrolyte as an oxygen pump. These parameters measured by EIS are compared with the values obtained by the potential step (PS) method on the same electrochemical system. The two approaches are equivalent for characterizing diffusion of oxygen vacancies, but EIS is more appropriate for direct measurement of the exchange coefficient. Calculation of this parameter from the PS data may not be straightforward. The two techniques are complementary for complete characterization of oxygen exchange and transport in mixed conducting oxides. |
doi_str_mv | 10.1016/S0167-2738(00)00422-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27720249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273800004227</els_id><sourcerecordid>27720249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-2e38c561a558d0710d34344b4a43eb00b050fa7b0547f16e0aafb587029784503</originalsourceid><addsrcrecordid>eNqFkN9rFDEQgINY8Gz9E4SAIPqwdvJjN7knkaK2UPCh9Tlkk9lrZDdZN7ly-9-b3pW--pIZmG8yMx8h7xl8YcC6y7v6qIYroT8BfAaQnDfqFdkwrWrS6e1rsnlB3pC3Of8BgE7obkPSXdn7laaBpsO6w0jx4B5s3CG10dOy2JjntBQaIp3CAT11Kfq9KyHuatrbsdiCmfYrxRFdWZJ7wCk4O9IwzehtdEjzfKxkl-b1gpwNdsz47jmek98_vt9fXTe3v37eXH27bZwUvDQchXZtx2zbag-KgRdSSNlLKwX2AD20MFhVg1QD6xCsHfpWK-BbpWUL4px8PP07L-nvHnMxU8gOx9FGTPtsuFIcuNxWsD2Brm6YFxzMvITJLqthYJ70mqNe8-TOAJijXqNq34fnATbXc4dqyoX80qyFYpxX6uuJwnrrY8DFZBewSvFhqVKMT-E_c_4BqSiPzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27720249</pqid></control><display><type>article</type><title>Study of oxygen exchange and transport in mixed conducting cobaltates by electrochemical impedance spectroscopy</title><source>Elsevier</source><creator>Diethelm, Stefan ; Closset, Alexandre ; Van herle, Jan ; McEvoy, A.J ; Nisancioglu, Kemal</creator><creatorcontrib>Diethelm, Stefan ; Closset, Alexandre ; Van herle, Jan ; McEvoy, A.J ; Nisancioglu, Kemal</creatorcontrib><description>Oxygen diffusion is treated in a dense electronically conducting perovskite pellet blocked ionically on one surface, electronically on the other, and sealed on the cylindrical surface. Oxygen exchange at the electronically blocked surface is assigned first order reaction kinetics. An equivalent circuit model is suggested for the cell impedance by the Laplace transform of Fick’s second law. The methodology thus developed for this technique is applied to determine the chemical diffusion and surface exchange coefficients of SrCo
0.5Fe
0.5O
3−
δ
interfaced with air in a solid state electrochemical cell employing a YSZ electrolyte as an oxygen pump. These parameters measured by EIS are compared with the values obtained by the potential step (PS) method on the same electrochemical system. The two approaches are equivalent for characterizing diffusion of oxygen vacancies, but EIS is more appropriate for direct measurement of the exchange coefficient. Calculation of this parameter from the PS data may not be straightforward. The two techniques are complementary for complete characterization of oxygen exchange and transport in mixed conducting oxides.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/S0167-2738(00)00422-7</identifier><identifier>CODEN: SSIOD3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Diffusion ; Diffusion in solids ; Electronic transport in condensed matter ; Exact sciences and technology ; Fuel cells ; Impedance spectroscopy ; Membrane ; Mixed conductivity and conductivity transitions ; Perovskites ; Physics ; Self-diffusion and ionic conduction in nonmetals ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Solid state ionics, 2000-11, Vol.135 (1), p.613-618</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-2e38c561a558d0710d34344b4a43eb00b050fa7b0547f16e0aafb587029784503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=837122$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Diethelm, Stefan</creatorcontrib><creatorcontrib>Closset, Alexandre</creatorcontrib><creatorcontrib>Van herle, Jan</creatorcontrib><creatorcontrib>McEvoy, A.J</creatorcontrib><creatorcontrib>Nisancioglu, Kemal</creatorcontrib><title>Study of oxygen exchange and transport in mixed conducting cobaltates by electrochemical impedance spectroscopy</title><title>Solid state ionics</title><description>Oxygen diffusion is treated in a dense electronically conducting perovskite pellet blocked ionically on one surface, electronically on the other, and sealed on the cylindrical surface. Oxygen exchange at the electronically blocked surface is assigned first order reaction kinetics. An equivalent circuit model is suggested for the cell impedance by the Laplace transform of Fick’s second law. The methodology thus developed for this technique is applied to determine the chemical diffusion and surface exchange coefficients of SrCo
0.5Fe
0.5O
3−
δ
interfaced with air in a solid state electrochemical cell employing a YSZ electrolyte as an oxygen pump. These parameters measured by EIS are compared with the values obtained by the potential step (PS) method on the same electrochemical system. The two approaches are equivalent for characterizing diffusion of oxygen vacancies, but EIS is more appropriate for direct measurement of the exchange coefficient. Calculation of this parameter from the PS data may not be straightforward. The two techniques are complementary for complete characterization of oxygen exchange and transport in mixed conducting oxides.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion</subject><subject>Diffusion in solids</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Impedance spectroscopy</subject><subject>Membrane</subject><subject>Mixed conductivity and conductivity transitions</subject><subject>Perovskites</subject><subject>Physics</subject><subject>Self-diffusion and ionic conduction in nonmetals</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkN9rFDEQgINY8Gz9E4SAIPqwdvJjN7knkaK2UPCh9Tlkk9lrZDdZN7ly-9-b3pW--pIZmG8yMx8h7xl8YcC6y7v6qIYroT8BfAaQnDfqFdkwrWrS6e1rsnlB3pC3Of8BgE7obkPSXdn7laaBpsO6w0jx4B5s3CG10dOy2JjntBQaIp3CAT11Kfq9KyHuatrbsdiCmfYrxRFdWZJ7wCk4O9IwzehtdEjzfKxkl-b1gpwNdsz47jmek98_vt9fXTe3v37eXH27bZwUvDQchXZtx2zbag-KgRdSSNlLKwX2AD20MFhVg1QD6xCsHfpWK-BbpWUL4px8PP07L-nvHnMxU8gOx9FGTPtsuFIcuNxWsD2Brm6YFxzMvITJLqthYJ70mqNe8-TOAJijXqNq34fnATbXc4dqyoX80qyFYpxX6uuJwnrrY8DFZBewSvFhqVKMT-E_c_4BqSiPzw</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Diethelm, Stefan</creator><creator>Closset, Alexandre</creator><creator>Van herle, Jan</creator><creator>McEvoy, A.J</creator><creator>Nisancioglu, Kemal</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20001101</creationdate><title>Study of oxygen exchange and transport in mixed conducting cobaltates by electrochemical impedance spectroscopy</title><author>Diethelm, Stefan ; Closset, Alexandre ; Van herle, Jan ; McEvoy, A.J ; Nisancioglu, Kemal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-2e38c561a558d0710d34344b4a43eb00b050fa7b0547f16e0aafb587029784503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion</topic><topic>Diffusion in solids</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Impedance spectroscopy</topic><topic>Membrane</topic><topic>Mixed conductivity and conductivity transitions</topic><topic>Perovskites</topic><topic>Physics</topic><topic>Self-diffusion and ionic conduction in nonmetals</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diethelm, Stefan</creatorcontrib><creatorcontrib>Closset, Alexandre</creatorcontrib><creatorcontrib>Van herle, Jan</creatorcontrib><creatorcontrib>McEvoy, A.J</creatorcontrib><creatorcontrib>Nisancioglu, Kemal</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diethelm, Stefan</au><au>Closset, Alexandre</au><au>Van herle, Jan</au><au>McEvoy, A.J</au><au>Nisancioglu, Kemal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of oxygen exchange and transport in mixed conducting cobaltates by electrochemical impedance spectroscopy</atitle><jtitle>Solid state ionics</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>135</volume><issue>1</issue><spage>613</spage><epage>618</epage><pages>613-618</pages><issn>0167-2738</issn><eissn>1872-7689</eissn><coden>SSIOD3</coden><abstract>Oxygen diffusion is treated in a dense electronically conducting perovskite pellet blocked ionically on one surface, electronically on the other, and sealed on the cylindrical surface. Oxygen exchange at the electronically blocked surface is assigned first order reaction kinetics. An equivalent circuit model is suggested for the cell impedance by the Laplace transform of Fick’s second law. The methodology thus developed for this technique is applied to determine the chemical diffusion and surface exchange coefficients of SrCo
0.5Fe
0.5O
3−
δ
interfaced with air in a solid state electrochemical cell employing a YSZ electrolyte as an oxygen pump. These parameters measured by EIS are compared with the values obtained by the potential step (PS) method on the same electrochemical system. The two approaches are equivalent for characterizing diffusion of oxygen vacancies, but EIS is more appropriate for direct measurement of the exchange coefficient. Calculation of this parameter from the PS data may not be straightforward. The two techniques are complementary for complete characterization of oxygen exchange and transport in mixed conducting oxides.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-2738(00)00422-7</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-2738 |
ispartof | Solid state ionics, 2000-11, Vol.135 (1), p.613-618 |
issn | 0167-2738 1872-7689 |
language | eng |
recordid | cdi_proquest_miscellaneous_27720249 |
source | Elsevier |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Diffusion Diffusion in solids Electronic transport in condensed matter Exact sciences and technology Fuel cells Impedance spectroscopy Membrane Mixed conductivity and conductivity transitions Perovskites Physics Self-diffusion and ionic conduction in nonmetals Transport properties of condensed matter (nonelectronic) |
title | Study of oxygen exchange and transport in mixed conducting cobaltates by electrochemical impedance spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20oxygen%20exchange%20and%20transport%20in%20mixed%20conducting%20cobaltates%20by%20electrochemical%20impedance%20spectroscopy&rft.jtitle=Solid%20state%20ionics&rft.au=Diethelm,%20Stefan&rft.date=2000-11-01&rft.volume=135&rft.issue=1&rft.spage=613&rft.epage=618&rft.pages=613-618&rft.issn=0167-2738&rft.eissn=1872-7689&rft.coden=SSIOD3&rft_id=info:doi/10.1016/S0167-2738(00)00422-7&rft_dat=%3Cproquest_cross%3E27720249%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-2e38c561a558d0710d34344b4a43eb00b050fa7b0547f16e0aafb587029784503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27720249&rft_id=info:pmid/&rfr_iscdi=true |