Loading…

Structure of the soot growth region of laminar premixed methane/oxygen flames

The structure of the soot growth region of laminar premixed methane/oxygen flames (fuel-equivalence ratios of 1.60–2.77) was studied both experimentally and computationally. Measurements were carried out in flames stabilized on a flat flame burner operated at standard temperature and pressure, and i...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2000-06, Vol.121 (4), p.640-650
Main Authors: Xu, F., Faeth, G.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structure of the soot growth region of laminar premixed methane/oxygen flames (fuel-equivalence ratios of 1.60–2.77) was studied both experimentally and computationally. Measurements were carried out in flames stabilized on a flat flame burner operated at standard temperature and pressure, and included velocities by laser velocimetry, soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, major gas species concentrations by sampling and gas chromatography, and hydrogen atom concentrations by the Li/LiOH technique in conjunction with atomic absorption to find the proportion of free lithium in the flames. The measured concentrations of major gas species were in reasonably good agreement with predictions based on the detailed mechanisms of Leung and Lindstedt, and Frenklach and coworkers. The measurements also confirmed predictions of both these mechanisms that H-atom concentrations are in local thermodynamic equilibrium throughout the soot growth region even through the concentrations of major gas species are not. Thus, present findings support recent evaluations of the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanism in similar flames, where the approximation that H-atom concentrations were in local thermodynamic equilibrium was adopted, based on predictions using the two mechanisms, due to the absence of direct H-atom concentration measurements.
ISSN:0010-2180
1556-2921
DOI:10.1016/S0010-2180(99)00170-4