Loading…
Force/moment tracking performance during constant-pose, force-varying, bilaterally symmetric, hand-wrist tasks
Bilateral movement is widely used for calibration of myoelectric prosthesis controllers, and is also relevant as rehabilitation therapy for patients with motor impairment and for athletic training. Target tracking and/or force matching tasks can be used to elicit such bilateral movement. Limited des...
Saved in:
Published in: | Journal of electromyography and kinesiology 2023-04, Vol.69, p.102753-102753, Article 102753 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bilateral movement is widely used for calibration of myoelectric prosthesis controllers, and is also relevant as rehabilitation therapy for patients with motor impairment and for athletic training. Target tracking and/or force matching tasks can be used to elicit such bilateral movement. Limited descriptive accuracy data exist in able-bodied subjects for bilateral target tracking or dominant vs non-dominant dynamic force matching tasks requiring more than one degree of freedom (DoF). We examined dynamic trajectory (0.75 Hz band-limited, white, uniform random) constant-posture, hand open-close, wrist pronation-supination target tracking and matching tasks. Tasks were normalized to maximum voluntary contraction (MVC), spanning a ± 30% MVC force range, in four 1-DoF and 2-DoF tasks: (1, 2) unilateral dominant limb tracking with/without visual feedback, and (3, 4) bilateral dominant/non-dominant limb tracking with mirror visual feedback. In 12 able-bodied subjects, unilateral tracking error with visual feedback averaged 10–15 %MVC, but up to 30 %MVC without visual feedback. Bilateral matching error averaged ∼10 %MVC and was affected little by visual feedback type, so long as feedback was provided. In 1-DoF bilateral tracking, the dominant side had statistically lower error than the non-dominant side. In 2-DoF bilateral tracking, the side providing mirror visual feedback exhibited lower error than the opposite side. In 2-DoF tasks (assumed to be more challenging than their constituent 1-DoF tracking tasks), hand grip force errors grew disproportionately larger than those of each wrist DoF. In unilateral 1-DoF tasks, both hand vs target and wrist vs target latency averaged 250–350 ms. In unilateral 2-DoF tasks, wrist vs target latency also averaged 250–350 ms, while hand vs target latency averaged > 500 ms. These results provide guidance on bilateral 2-DoF hand-wrist performance in target tracking, and dominant vs non-dominant force matching tasks. |
---|---|
ISSN: | 1050-6411 1873-5711 |
DOI: | 10.1016/j.jelekin.2023.102753 |