Loading…

A structural defect identification approach based on a continuum damage model

This paper introduces a structural identification technique built on finite element (FE) model updating. The FE model is parameterized by a structural parameter that continuously describes the damage in the structure, and besides, an evolution equation of this damage parameter is presented. The mode...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2002-03, Vol.80 (5), p.417-436
Main Authors: Castello, D.A., Stutz, L.T., Rochinha, F.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces a structural identification technique built on finite element (FE) model updating. The FE model is parameterized by a structural parameter that continuously describes the damage in the structure, and besides, an evolution equation of this damage parameter is presented. The model updating is accomplished by determining the subset of this damage parameters that minimizes a global error derived from the dynamic residue vectors, which is obtained by introducing the experimental modal properties into the original model eigenproblem. A mode-shape projection technique is used in order to achieve compatibility between the dimension of the experimental and analytical models. The adjusted model maintains basic properties of the analytical model as the sparsity and the symmetry, which plays an important role in model updating-based damage identification. The verification and assessment of the current structural defect identification is performed on a analytically derived bidimensional truss structure and on a cantilever bidimensional Euler–Bernouilli beam through a virtual test simulator. This simulator is used to realistically simulate the corrupting effects of noise, filtering, digital sampling and truncation of the modal spectrum. The eigensystem realization algorithm along with the common-based normalized system identification were utilized to obtain the required natural frequencies and mode shapes.
ISSN:0045-7949
1879-2243
DOI:10.1016/S0045-7949(02)00015-9