Loading…

EXPLORING ONCE-PER-REVOLUTION AUDIO SIGNAL VARIANCE AS A CHATTER INDICATOR

The purpose of this study is an evaluation of the statistical variance in the once-per-revolution sampled audio signal during milling as a chatter indicator. It is shown that, due to the synchronous and asynchronous nature of stable and unstable cuts, respectively, once-per-revolution sampling leads...

Full description

Saved in:
Bibliographic Details
Published in:Machining science and technology 2002-10, Vol.6 (2), p.215-233
Main Authors: Schmitz, Tony L., Medicus, Kate, Dutterer, Brian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this study is an evaluation of the statistical variance in the once-per-revolution sampled audio signal during milling as a chatter indicator. It is shown that, due to the synchronous and asynchronous nature of stable and unstable cuts, respectively, once-per-revolution sampling leads to a tight distribution of values for stable cuts, with a corresponding low variance, and a wider sample distribution for unstable cuts, with an associated high variance. A comparison of stability maps developed using: 1) analytic techniques, and 2) the variance from once-per-revolution sampled time-domain simulations is provided and good agreement is shown. Experimental agreement between the well-known Fast Fourier Transform (FFT) chatter detection method, that analyzes the content of the FFT spectrum for chatter frequencies, and the new variance-based technique is also demonstrated.
ISSN:1091-0344
1532-2483
DOI:10.1081/MST-120005957