Loading…
EXPLORING ONCE-PER-REVOLUTION AUDIO SIGNAL VARIANCE AS A CHATTER INDICATOR
The purpose of this study is an evaluation of the statistical variance in the once-per-revolution sampled audio signal during milling as a chatter indicator. It is shown that, due to the synchronous and asynchronous nature of stable and unstable cuts, respectively, once-per-revolution sampling leads...
Saved in:
Published in: | Machining science and technology 2002-10, Vol.6 (2), p.215-233 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this study is an evaluation of the statistical variance in the once-per-revolution sampled audio signal during milling as a chatter indicator. It is shown that, due to the synchronous and asynchronous nature of stable and unstable cuts, respectively, once-per-revolution sampling leads to a tight distribution of values for stable cuts, with a corresponding low variance, and a wider sample distribution for unstable cuts, with an associated high variance. A comparison of stability maps developed using: 1) analytic techniques, and 2) the variance from once-per-revolution sampled time-domain simulations is provided and good agreement is shown. Experimental agreement between the well-known Fast Fourier Transform (FFT) chatter detection method, that analyzes the content of the FFT spectrum for chatter frequencies, and the new variance-based technique is also demonstrated. |
---|---|
ISSN: | 1091-0344 1532-2483 |
DOI: | 10.1081/MST-120005957 |