Loading…

Determination of urinary spermine using controlled dissolution of polysulfide modified gold electrode

Spermine (SPM) is considered a biomarker for prostate cancer and detecting it becomes highly challenging due to its electro- and optical-inactive nature. SPM has a tendency to interact with groups such as phosphates and sulfides to form macrocyclic arrangements known as nuclear aggregates of polyami...

Full description

Saved in:
Bibliographic Details
Published in:Mikrochimica acta (1966) 2023-03, Vol.190 (3), p.87-87, Article 87
Main Authors: Kannan, Sanjeev Kumar, Esakkiappa, Subramani, Anthonysamy, Esokkiya, Sudalaimuthu, Sudalaimani, Sulaiman, Yusran, Khan, Mohammad Mansoob, Chinnaiah, Jeyabharathi, Krishnan, Giribabu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spermine (SPM) is considered a biomarker for prostate cancer and detecting it becomes highly challenging due to its electro- and optical-inactive nature. SPM has a tendency to interact with groups such as phosphates and sulfides to form macrocyclic arrangements known as nuclear aggregates of polyamines. Using this tendency, an electrochemical sensor has been developed using a polysulfide (PS) modified Au electrode (PS@Au electrode). PS has been synthesized from elemental sulfur by hydrothermal method and characterized using UV–Vis, fluorescence, FTIR, SEM, and XPS analyses. The PS@Au electrode was employed for electrochemical sensing of SPM. In the presence of SPM, a decrease in gold oxide reduction current was noted which is proportional to the concentration of SPM. The decrease in gold oxide reduction (0.5 V) current was attributed to the complexing nature of SPM-PS at the electrode interface. The reason for the decrease in current has been substantiated using XRF, XPS, and spectroelectrochemical studies. Under the optimized conditions, the PS@Au electrode exhibited a linear range of 1.55–250 µM with LOD of 0.511 ± 0.02 µM (3σ). The electrochemical strategy for SPM sensing exhibited better selectivity even in the presence of possible interferents. The selectivity stems from the selective interaction of SPM with PS on the Au electrode surface; the tested amino acids, and other molecules do not complex with PS and hence they could not interfere. The PS@Au electrode has been subjected to the determination of SPM in artificial urine samples and exhibited outstanding performance in the synthetic sample. Graphical Abstract
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-023-05664-8