Loading…
Large-area periodically-poled lithium niobate wafer stacks optimized for high-energy narrowband terahertz generation
Periodically-poled lithium niobate (PPLN) sources consisting of custom-built stacks of large-area wafers provide a unique opportunity to systematically study the multi-cycle terahertz (THz) generation mechanism as they are assembled layer-by-layer. Here we investigate and optimize the THz emission f...
Saved in:
Published in: | Optics express 2023-01, Vol.31 (3), p.4041-4054 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c320t-20da83910a1c7d5cc0481cfb782fa3370e4955d6df87dbaddda1b2e4ccebf7373 |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-20da83910a1c7d5cc0481cfb782fa3370e4955d6df87dbaddda1b2e4ccebf7373 |
container_end_page | 4054 |
container_issue | 3 |
container_start_page | 4041 |
container_title | Optics express |
container_volume | 31 |
creator | Mosley, Connor D W Lake, Daniel S Graham, Darren M Jamison, Steven P Appleby, Robert B Burt, Graeme Hibberd, Morgan T |
description | Periodically-poled lithium niobate (PPLN) sources consisting of custom-built stacks of large-area wafers provide a unique opportunity to systematically study the multi-cycle terahertz (THz) generation mechanism as they are assembled layer-by-layer. Here we investigate and optimize the THz emission from PPLN wafer stacks as a function of wafer number, pump fluence, pulse duration and chirp, wafer separation, and pump focusing. Using 135 µm-thick, 2"-diameter wafers we generate high-energy, narrowband THz pulses with central frequencies up to 0.39 THz, directly suitable for THz-driven particle acceleration applications. We explore the multi-cycle pulse build-up with increasing wafer numbers using electro-optic sampling measurements, achieving THz conversion efficiencies up to 0.17%, while demonstrating unique control over the pulse length and bandwidth these sources offer. Guided by simulations, observed frequency-dependence on both stack-mounting and pump focusing conditions have been attributed to inter-wafer etalon and Gouy phase-shifts respectively, revealing subtle features that are critical to the understanding and performance of PPLN wafer-stack sources for optimal narrowband THz generation. |
doi_str_mv | 10.1364/OE.475604 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2776516144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776516144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-20da83910a1c7d5cc0481cfb782fa3370e4955d6df87dbaddda1b2e4ccebf7373</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EoqUw8AeQRxhS7NiJ0xFV5UOq1AXm6MV-aQ1JHGxXVfvradWCmO6V7tEdDiG3nI25yOXjYjaWKsuZPCNDziYykaxQ5__6gFyF8MkYl2qiLslA5KrIRMGHJM7BLzEBj0B79NYZq6FptknvGjS0sXFl1y3trKsgIt1AjZ6GCPorUNdH29rdHqudpyu7XCXYoV9uaQfeu00FnaERPazQxx1dHkaI1nXX5KKGJuDNKUfk43n2Pn1N5ouXt-nTPNEiZTFJmYFCTDgDrpXJtGay4LquVJHWIIRiKCdZZnJTF8pUYIwBXqUotcaqVkKJEbk__vbefa8xxLK1QWPTQIduHcpUqTzjOZdyjz4cUe1dCB7rsve2Bb8tOSsPksvFrDxK3rN3p9t11aL5I3-tih_2O3pc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776516144</pqid></control><display><type>article</type><title>Large-area periodically-poled lithium niobate wafer stacks optimized for high-energy narrowband terahertz generation</title><source>EZB Electronic Journals Library</source><creator>Mosley, Connor D W ; Lake, Daniel S ; Graham, Darren M ; Jamison, Steven P ; Appleby, Robert B ; Burt, Graeme ; Hibberd, Morgan T</creator><creatorcontrib>Mosley, Connor D W ; Lake, Daniel S ; Graham, Darren M ; Jamison, Steven P ; Appleby, Robert B ; Burt, Graeme ; Hibberd, Morgan T</creatorcontrib><description>Periodically-poled lithium niobate (PPLN) sources consisting of custom-built stacks of large-area wafers provide a unique opportunity to systematically study the multi-cycle terahertz (THz) generation mechanism as they are assembled layer-by-layer. Here we investigate and optimize the THz emission from PPLN wafer stacks as a function of wafer number, pump fluence, pulse duration and chirp, wafer separation, and pump focusing. Using 135 µm-thick, 2"-diameter wafers we generate high-energy, narrowband THz pulses with central frequencies up to 0.39 THz, directly suitable for THz-driven particle acceleration applications. We explore the multi-cycle pulse build-up with increasing wafer numbers using electro-optic sampling measurements, achieving THz conversion efficiencies up to 0.17%, while demonstrating unique control over the pulse length and bandwidth these sources offer. Guided by simulations, observed frequency-dependence on both stack-mounting and pump focusing conditions have been attributed to inter-wafer etalon and Gouy phase-shifts respectively, revealing subtle features that are critical to the understanding and performance of PPLN wafer-stack sources for optimal narrowband THz generation.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.475604</identifier><identifier>PMID: 36785381</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2023-01, Vol.31 (3), p.4041-4054</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-20da83910a1c7d5cc0481cfb782fa3370e4955d6df87dbaddda1b2e4ccebf7373</citedby><cites>FETCH-LOGICAL-c320t-20da83910a1c7d5cc0481cfb782fa3370e4955d6df87dbaddda1b2e4ccebf7373</cites><orcidid>0000-0002-0084-9261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36785381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mosley, Connor D W</creatorcontrib><creatorcontrib>Lake, Daniel S</creatorcontrib><creatorcontrib>Graham, Darren M</creatorcontrib><creatorcontrib>Jamison, Steven P</creatorcontrib><creatorcontrib>Appleby, Robert B</creatorcontrib><creatorcontrib>Burt, Graeme</creatorcontrib><creatorcontrib>Hibberd, Morgan T</creatorcontrib><title>Large-area periodically-poled lithium niobate wafer stacks optimized for high-energy narrowband terahertz generation</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Periodically-poled lithium niobate (PPLN) sources consisting of custom-built stacks of large-area wafers provide a unique opportunity to systematically study the multi-cycle terahertz (THz) generation mechanism as they are assembled layer-by-layer. Here we investigate and optimize the THz emission from PPLN wafer stacks as a function of wafer number, pump fluence, pulse duration and chirp, wafer separation, and pump focusing. Using 135 µm-thick, 2"-diameter wafers we generate high-energy, narrowband THz pulses with central frequencies up to 0.39 THz, directly suitable for THz-driven particle acceleration applications. We explore the multi-cycle pulse build-up with increasing wafer numbers using electro-optic sampling measurements, achieving THz conversion efficiencies up to 0.17%, while demonstrating unique control over the pulse length and bandwidth these sources offer. Guided by simulations, observed frequency-dependence on both stack-mounting and pump focusing conditions have been attributed to inter-wafer etalon and Gouy phase-shifts respectively, revealing subtle features that are critical to the understanding and performance of PPLN wafer-stack sources for optimal narrowband THz generation.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EoqUw8AeQRxhS7NiJ0xFV5UOq1AXm6MV-aQ1JHGxXVfvradWCmO6V7tEdDiG3nI25yOXjYjaWKsuZPCNDziYykaxQ5__6gFyF8MkYl2qiLslA5KrIRMGHJM7BLzEBj0B79NYZq6FptknvGjS0sXFl1y3trKsgIt1AjZ6GCPorUNdH29rdHqudpyu7XCXYoV9uaQfeu00FnaERPazQxx1dHkaI1nXX5KKGJuDNKUfk43n2Pn1N5ouXt-nTPNEiZTFJmYFCTDgDrpXJtGay4LquVJHWIIRiKCdZZnJTF8pUYIwBXqUotcaqVkKJEbk__vbefa8xxLK1QWPTQIduHcpUqTzjOZdyjz4cUe1dCB7rsve2Bb8tOSsPksvFrDxK3rN3p9t11aL5I3-tih_2O3pc</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Mosley, Connor D W</creator><creator>Lake, Daniel S</creator><creator>Graham, Darren M</creator><creator>Jamison, Steven P</creator><creator>Appleby, Robert B</creator><creator>Burt, Graeme</creator><creator>Hibberd, Morgan T</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0084-9261</orcidid></search><sort><creationdate>20230130</creationdate><title>Large-area periodically-poled lithium niobate wafer stacks optimized for high-energy narrowband terahertz generation</title><author>Mosley, Connor D W ; Lake, Daniel S ; Graham, Darren M ; Jamison, Steven P ; Appleby, Robert B ; Burt, Graeme ; Hibberd, Morgan T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-20da83910a1c7d5cc0481cfb782fa3370e4955d6df87dbaddda1b2e4ccebf7373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosley, Connor D W</creatorcontrib><creatorcontrib>Lake, Daniel S</creatorcontrib><creatorcontrib>Graham, Darren M</creatorcontrib><creatorcontrib>Jamison, Steven P</creatorcontrib><creatorcontrib>Appleby, Robert B</creatorcontrib><creatorcontrib>Burt, Graeme</creatorcontrib><creatorcontrib>Hibberd, Morgan T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosley, Connor D W</au><au>Lake, Daniel S</au><au>Graham, Darren M</au><au>Jamison, Steven P</au><au>Appleby, Robert B</au><au>Burt, Graeme</au><au>Hibberd, Morgan T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-area periodically-poled lithium niobate wafer stacks optimized for high-energy narrowband terahertz generation</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2023-01-30</date><risdate>2023</risdate><volume>31</volume><issue>3</issue><spage>4041</spage><epage>4054</epage><pages>4041-4054</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Periodically-poled lithium niobate (PPLN) sources consisting of custom-built stacks of large-area wafers provide a unique opportunity to systematically study the multi-cycle terahertz (THz) generation mechanism as they are assembled layer-by-layer. Here we investigate and optimize the THz emission from PPLN wafer stacks as a function of wafer number, pump fluence, pulse duration and chirp, wafer separation, and pump focusing. Using 135 µm-thick, 2"-diameter wafers we generate high-energy, narrowband THz pulses with central frequencies up to 0.39 THz, directly suitable for THz-driven particle acceleration applications. We explore the multi-cycle pulse build-up with increasing wafer numbers using electro-optic sampling measurements, achieving THz conversion efficiencies up to 0.17%, while demonstrating unique control over the pulse length and bandwidth these sources offer. Guided by simulations, observed frequency-dependence on both stack-mounting and pump focusing conditions have been attributed to inter-wafer etalon and Gouy phase-shifts respectively, revealing subtle features that are critical to the understanding and performance of PPLN wafer-stack sources for optimal narrowband THz generation.</abstract><cop>United States</cop><pmid>36785381</pmid><doi>10.1364/OE.475604</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0084-9261</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2023-01, Vol.31 (3), p.4041-4054 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2776516144 |
source | EZB Electronic Journals Library |
title | Large-area periodically-poled lithium niobate wafer stacks optimized for high-energy narrowband terahertz generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-area%20periodically-poled%20lithium%20niobate%20wafer%20stacks%20optimized%20for%20high-energy%20narrowband%20terahertz%20generation&rft.jtitle=Optics%20express&rft.au=Mosley,%20Connor%20D%20W&rft.date=2023-01-30&rft.volume=31&rft.issue=3&rft.spage=4041&rft.epage=4054&rft.pages=4041-4054&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.475604&rft_dat=%3Cproquest_cross%3E2776516144%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-20da83910a1c7d5cc0481cfb782fa3370e4955d6df87dbaddda1b2e4ccebf7373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2776516144&rft_id=info:pmid/36785381&rfr_iscdi=true |