Loading…
A unified approach based on multidimensional scaling for calibration estimation in survey sampling with qualitative auxiliary information
Survey calibration is a widely used method to estimate the population mean or total score of a target variable, particularly in medical research. In this procedure, auxiliary information related to the variable of interest is used to recalibrate the estimation weights. However, when the auxiliary in...
Saved in:
Published in: | Statistical methods in medical research 2023-04, Vol.32 (4), p.760-772 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-c1ad9ffdf6e7b03e92a6a32973335a34cec116ec7f69fa7a656d62d1d696745d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-c1ad9ffdf6e7b03e92a6a32973335a34cec116ec7f69fa7a656d62d1d696745d3 |
container_end_page | 772 |
container_issue | 4 |
container_start_page | 760 |
container_title | Statistical methods in medical research |
container_volume | 32 |
creator | Vera, J Fernando Sánchez Zuleta, Carmen Cecilia Rueda, Maria del Mar |
description | Survey calibration is a widely used method to estimate the population mean or total score of a target variable, particularly in medical research. In this procedure, auxiliary information related to the variable of interest is used to recalibrate the estimation weights. However, when the auxiliary information includes qualitative variables, traditional calibration techniques may be not feasible or the optimisation procedure may fail. In this article, we propose the use of linear calibration in conjunction with a multidimensional scaling-based set of continuous, uncorrelated auxiliary variables along with a suitable metric in a distance-based regression framework. The calibration weights are estimated using a projection of the auxiliary information on a low-dimensional Euclidean space. The approach becomes one of the linear calibration with quantitative variables avoiding the usual computational problems in the presence of qualitative auxiliary information. The new variables preserve the underlying assumption in linear calibration of a linear relationship between the auxiliary and target variables, and therefore the optimal properties of the linear calibration method remain true. The behaviour of this approach is examined using a Monte Carlo procedure and its value is illustrated by analysing real data sets and by comparing its performance with that of traditional calibration procedures. |
doi_str_mv | 10.1177/09622802231151211 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2777011370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09622802231151211</sage_id><sourcerecordid>2803278632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c1ad9ffdf6e7b03e92a6a32973335a34cec116ec7f69fa7a656d62d1d696745d3</originalsourceid><addsrcrecordid>eNp1kctuFDEQRS0EIkPgA9ggS2zYdHDZPa72Mop4SZHYwLpV40fiqB8Tux0yn8Bf46EDSCBWLqvOvWXXZewliDMAxLfCaCk7IaUC2IIEeMQ20CI2Qqn2Mdsc-80ROGHPcr4RQqBozVN2ojR2BtFs2PdzXqYYonec9vs0k73mO8r1Ok98LMMSXRz9lOM80cCzpSFOVzzMiR_LXaKldrjPSxzXMk48l3TnDzzTuP9Jf4vLNb8tlV8qc-c5lfs4REqHSlerVfmcPQk0ZP_i4TxlX9-_-3Lxsbn8_OHTxfllY5XulsYCOROCC9rjTihvJGlS0qBSakuqtd4CaG8xaBMISW-109KB00Zju3XqlL1Zfetvb0t9eT_GbP0w0OTnknuJiAJAoajo67_Qm7mkuohKdUJJ7LSSlYKVsmnOOfnQ71PdRjr0IPpjTv0_OVXNqwfnshu9-634FUwFzlYg05X_M_b_jj8AXrOdnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803278632</pqid></control><display><type>article</type><title>A unified approach based on multidimensional scaling for calibration estimation in survey sampling with qualitative auxiliary information</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE</source><creator>Vera, J Fernando ; Sánchez Zuleta, Carmen Cecilia ; Rueda, Maria del Mar</creator><creatorcontrib>Vera, J Fernando ; Sánchez Zuleta, Carmen Cecilia ; Rueda, Maria del Mar</creatorcontrib><description>Survey calibration is a widely used method to estimate the population mean or total score of a target variable, particularly in medical research. In this procedure, auxiliary information related to the variable of interest is used to recalibrate the estimation weights. However, when the auxiliary information includes qualitative variables, traditional calibration techniques may be not feasible or the optimisation procedure may fail. In this article, we propose the use of linear calibration in conjunction with a multidimensional scaling-based set of continuous, uncorrelated auxiliary variables along with a suitable metric in a distance-based regression framework. The calibration weights are estimated using a projection of the auxiliary information on a low-dimensional Euclidean space. The approach becomes one of the linear calibration with quantitative variables avoiding the usual computational problems in the presence of qualitative auxiliary information. The new variables preserve the underlying assumption in linear calibration of a linear relationship between the auxiliary and target variables, and therefore the optimal properties of the linear calibration method remain true. The behaviour of this approach is examined using a Monte Carlo procedure and its value is illustrated by analysing real data sets and by comparing its performance with that of traditional calibration procedures.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/09622802231151211</identifier><identifier>PMID: 36789779</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Calibration ; Continuity (mathematics) ; Euclidean geometry ; Medical research ; Monte Carlo Method ; Multidimensional Scaling Analysis ; Optimization ; Oxidation ; Polls & surveys ; Variables</subject><ispartof>Statistical methods in medical research, 2023-04, Vol.32 (4), p.760-772</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c1ad9ffdf6e7b03e92a6a32973335a34cec116ec7f69fa7a656d62d1d696745d3</citedby><cites>FETCH-LOGICAL-c368t-c1ad9ffdf6e7b03e92a6a32973335a34cec116ec7f69fa7a656d62d1d696745d3</cites><orcidid>0000-0002-7410-9610 ; 0000-0002-6499-7132 ; 0000-0002-2903-8745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,30999,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36789779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vera, J Fernando</creatorcontrib><creatorcontrib>Sánchez Zuleta, Carmen Cecilia</creatorcontrib><creatorcontrib>Rueda, Maria del Mar</creatorcontrib><title>A unified approach based on multidimensional scaling for calibration estimation in survey sampling with qualitative auxiliary information</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Survey calibration is a widely used method to estimate the population mean or total score of a target variable, particularly in medical research. In this procedure, auxiliary information related to the variable of interest is used to recalibrate the estimation weights. However, when the auxiliary information includes qualitative variables, traditional calibration techniques may be not feasible or the optimisation procedure may fail. In this article, we propose the use of linear calibration in conjunction with a multidimensional scaling-based set of continuous, uncorrelated auxiliary variables along with a suitable metric in a distance-based regression framework. The calibration weights are estimated using a projection of the auxiliary information on a low-dimensional Euclidean space. The approach becomes one of the linear calibration with quantitative variables avoiding the usual computational problems in the presence of qualitative auxiliary information. The new variables preserve the underlying assumption in linear calibration of a linear relationship between the auxiliary and target variables, and therefore the optimal properties of the linear calibration method remain true. The behaviour of this approach is examined using a Monte Carlo procedure and its value is illustrated by analysing real data sets and by comparing its performance with that of traditional calibration procedures.</description><subject>Calibration</subject><subject>Continuity (mathematics)</subject><subject>Euclidean geometry</subject><subject>Medical research</subject><subject>Monte Carlo Method</subject><subject>Multidimensional Scaling Analysis</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Polls & surveys</subject><subject>Variables</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kctuFDEQRS0EIkPgA9ggS2zYdHDZPa72Mop4SZHYwLpV40fiqB8Tux0yn8Bf46EDSCBWLqvOvWXXZewliDMAxLfCaCk7IaUC2IIEeMQ20CI2Qqn2Mdsc-80ROGHPcr4RQqBozVN2ojR2BtFs2PdzXqYYonec9vs0k73mO8r1Ok98LMMSXRz9lOM80cCzpSFOVzzMiR_LXaKldrjPSxzXMk48l3TnDzzTuP9Jf4vLNb8tlV8qc-c5lfs4REqHSlerVfmcPQk0ZP_i4TxlX9-_-3Lxsbn8_OHTxfllY5XulsYCOROCC9rjTihvJGlS0qBSakuqtd4CaG8xaBMISW-109KB00Zju3XqlL1Zfetvb0t9eT_GbP0w0OTnknuJiAJAoajo67_Qm7mkuohKdUJJ7LSSlYKVsmnOOfnQ71PdRjr0IPpjTv0_OVXNqwfnshu9-634FUwFzlYg05X_M_b_jj8AXrOdnA</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Vera, J Fernando</creator><creator>Sánchez Zuleta, Carmen Cecilia</creator><creator>Rueda, Maria del Mar</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7410-9610</orcidid><orcidid>https://orcid.org/0000-0002-6499-7132</orcidid><orcidid>https://orcid.org/0000-0002-2903-8745</orcidid></search><sort><creationdate>202304</creationdate><title>A unified approach based on multidimensional scaling for calibration estimation in survey sampling with qualitative auxiliary information</title><author>Vera, J Fernando ; Sánchez Zuleta, Carmen Cecilia ; Rueda, Maria del Mar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c1ad9ffdf6e7b03e92a6a32973335a34cec116ec7f69fa7a656d62d1d696745d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calibration</topic><topic>Continuity (mathematics)</topic><topic>Euclidean geometry</topic><topic>Medical research</topic><topic>Monte Carlo Method</topic><topic>Multidimensional Scaling Analysis</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Polls & surveys</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vera, J Fernando</creatorcontrib><creatorcontrib>Sánchez Zuleta, Carmen Cecilia</creatorcontrib><creatorcontrib>Rueda, Maria del Mar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vera, J Fernando</au><au>Sánchez Zuleta, Carmen Cecilia</au><au>Rueda, Maria del Mar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unified approach based on multidimensional scaling for calibration estimation in survey sampling with qualitative auxiliary information</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2023-04</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>760</spage><epage>772</epage><pages>760-772</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Survey calibration is a widely used method to estimate the population mean or total score of a target variable, particularly in medical research. In this procedure, auxiliary information related to the variable of interest is used to recalibrate the estimation weights. However, when the auxiliary information includes qualitative variables, traditional calibration techniques may be not feasible or the optimisation procedure may fail. In this article, we propose the use of linear calibration in conjunction with a multidimensional scaling-based set of continuous, uncorrelated auxiliary variables along with a suitable metric in a distance-based regression framework. The calibration weights are estimated using a projection of the auxiliary information on a low-dimensional Euclidean space. The approach becomes one of the linear calibration with quantitative variables avoiding the usual computational problems in the presence of qualitative auxiliary information. The new variables preserve the underlying assumption in linear calibration of a linear relationship between the auxiliary and target variables, and therefore the optimal properties of the linear calibration method remain true. The behaviour of this approach is examined using a Monte Carlo procedure and its value is illustrated by analysing real data sets and by comparing its performance with that of traditional calibration procedures.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>36789779</pmid><doi>10.1177/09622802231151211</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7410-9610</orcidid><orcidid>https://orcid.org/0000-0002-6499-7132</orcidid><orcidid>https://orcid.org/0000-0002-2903-8745</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2023-04, Vol.32 (4), p.760-772 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_2777011370 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE |
subjects | Calibration Continuity (mathematics) Euclidean geometry Medical research Monte Carlo Method Multidimensional Scaling Analysis Optimization Oxidation Polls & surveys Variables |
title | A unified approach based on multidimensional scaling for calibration estimation in survey sampling with qualitative auxiliary information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unified%20approach%20based%20on%20multidimensional%20scaling%20for%20calibration%20estimation%20in%20survey%20sampling%20with%20qualitative%20auxiliary%20information&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Vera,%20J%20Fernando&rft.date=2023-04&rft.volume=32&rft.issue=4&rft.spage=760&rft.epage=772&rft.pages=760-772&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/09622802231151211&rft_dat=%3Cproquest_cross%3E2803278632%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-c1ad9ffdf6e7b03e92a6a32973335a34cec116ec7f69fa7a656d62d1d696745d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2803278632&rft_id=info:pmid/36789779&rft_sage_id=10.1177_09622802231151211&rfr_iscdi=true |