Loading…

Evolutionary computation and Wright's equation

In this paper, Wright's equation formulated in 1931 is proven and applied to evolutionary computation. Wright's equation shows that evolution is doing gradient ascent in a landscape defined by the average fitness of the population. The average fitness W is defined in terms of marginal gene...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science 2002-09, Vol.287 (1), p.145-165
Main Authors: Mühlenbein, H., Mahnig, Th
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-f425177ef4e3b453ff83077fc662b4f3a8ccb557a0a22f1b407f6d809640d7163
cites cdi_FETCH-LOGICAL-c385t-f425177ef4e3b453ff83077fc662b4f3a8ccb557a0a22f1b407f6d809640d7163
container_end_page 165
container_issue 1
container_start_page 145
container_title Theoretical computer science
container_volume 287
creator Mühlenbein, H.
Mahnig, Th
description In this paper, Wright's equation formulated in 1931 is proven and applied to evolutionary computation. Wright's equation shows that evolution is doing gradient ascent in a landscape defined by the average fitness of the population. The average fitness W is defined in terms of marginal gene frequencies p i . Wright's equation is only approximately valid in population genetics, but it exactly describes the behavior of our univariate marginal distribution algorithm (UMDA). We apply Wright's equation to a specific fitness function defined by Wright. Furthermore we introduce mutation into Wright's equation and UMDA. We show that mutation moves the stable attractors from the boundary into the interior. We compare Wright's equation with the diversified replicator equation. We show that a fast version of Wright's equation gives very good results for optimizing a class of binary fitness functions.
doi_str_mv 10.1016/S0304-3975(02)00098-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27788876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397502000981</els_id><sourcerecordid>27788876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f425177ef4e3b453ff83077fc662b4f3a8ccb557a0a22f1b407f6d809640d7163</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFZ_gpCVj0XqnfdkJVLqAwouVFwOk8mMjqRJO5MU_Pcmrbh1dTmX7xw4B6FzDDMMWNy8AAWW00LyKyDXAFCoHB-gCVayyAkp2CGa_CHH6CSlrwECLsUEzRbbtu670DYmfme2Xa37zowyM02Vvcfw8dldpsxt-t33FB15Uyd39nun6O1-8Tp_zJfPD0_zu2VuqeJd7hnhWErnmaMl49R7RUFKb4UgJfPUKGtLzqUBQ4jHJQPpRaWgEAwqiQWdoot97jq2m96lTq9Csq6uTePaPmkipVJKjiDfgza2KUXn9TqG1dBFY9DjOnq3jh6rayB6t47Gg-9273NDi21wUScbXGNdFaKzna7a8E_CD8C2a1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27788876</pqid></control><display><type>article</type><title>Evolutionary computation and Wright's equation</title><source>ScienceDirect Journals</source><creator>Mühlenbein, H. ; Mahnig, Th</creator><creatorcontrib>Mühlenbein, H. ; Mahnig, Th</creatorcontrib><description>In this paper, Wright's equation formulated in 1931 is proven and applied to evolutionary computation. Wright's equation shows that evolution is doing gradient ascent in a landscape defined by the average fitness of the population. The average fitness W is defined in terms of marginal gene frequencies p i . Wright's equation is only approximately valid in population genetics, but it exactly describes the behavior of our univariate marginal distribution algorithm (UMDA). We apply Wright's equation to a specific fitness function defined by Wright. Furthermore we introduce mutation into Wright's equation and UMDA. We show that mutation moves the stable attractors from the boundary into the interior. We compare Wright's equation with the diversified replicator equation. We show that a fast version of Wright's equation gives very good results for optimizing a class of binary fitness functions.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(02)00098-1</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Factorization of distribution ; Genetic algorithms ; Linkage equilibrium ; Maximum principle ; Microscopic and macroscopic evolutionary algorithm ; Replicator equation ; Search distributions ; Wright's equation</subject><ispartof>Theoretical computer science, 2002-09, Vol.287 (1), p.145-165</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f425177ef4e3b453ff83077fc662b4f3a8ccb557a0a22f1b407f6d809640d7163</citedby><cites>FETCH-LOGICAL-c385t-f425177ef4e3b453ff83077fc662b4f3a8ccb557a0a22f1b407f6d809640d7163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mühlenbein, H.</creatorcontrib><creatorcontrib>Mahnig, Th</creatorcontrib><title>Evolutionary computation and Wright's equation</title><title>Theoretical computer science</title><description>In this paper, Wright's equation formulated in 1931 is proven and applied to evolutionary computation. Wright's equation shows that evolution is doing gradient ascent in a landscape defined by the average fitness of the population. The average fitness W is defined in terms of marginal gene frequencies p i . Wright's equation is only approximately valid in population genetics, but it exactly describes the behavior of our univariate marginal distribution algorithm (UMDA). We apply Wright's equation to a specific fitness function defined by Wright. Furthermore we introduce mutation into Wright's equation and UMDA. We show that mutation moves the stable attractors from the boundary into the interior. We compare Wright's equation with the diversified replicator equation. We show that a fast version of Wright's equation gives very good results for optimizing a class of binary fitness functions.</description><subject>Factorization of distribution</subject><subject>Genetic algorithms</subject><subject>Linkage equilibrium</subject><subject>Maximum principle</subject><subject>Microscopic and macroscopic evolutionary algorithm</subject><subject>Replicator equation</subject><subject>Search distributions</subject><subject>Wright's equation</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFZ_gpCVj0XqnfdkJVLqAwouVFwOk8mMjqRJO5MU_Pcmrbh1dTmX7xw4B6FzDDMMWNy8AAWW00LyKyDXAFCoHB-gCVayyAkp2CGa_CHH6CSlrwECLsUEzRbbtu670DYmfme2Xa37zowyM02Vvcfw8dldpsxt-t33FB15Uyd39nun6O1-8Tp_zJfPD0_zu2VuqeJd7hnhWErnmaMl49R7RUFKb4UgJfPUKGtLzqUBQ4jHJQPpRaWgEAwqiQWdoot97jq2m96lTq9Csq6uTePaPmkipVJKjiDfgza2KUXn9TqG1dBFY9DjOnq3jh6rayB6t47Gg-9273NDi21wUScbXGNdFaKzna7a8E_CD8C2a1o</recordid><startdate>20020925</startdate><enddate>20020925</enddate><creator>Mühlenbein, H.</creator><creator>Mahnig, Th</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020925</creationdate><title>Evolutionary computation and Wright's equation</title><author>Mühlenbein, H. ; Mahnig, Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f425177ef4e3b453ff83077fc662b4f3a8ccb557a0a22f1b407f6d809640d7163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Factorization of distribution</topic><topic>Genetic algorithms</topic><topic>Linkage equilibrium</topic><topic>Maximum principle</topic><topic>Microscopic and macroscopic evolutionary algorithm</topic><topic>Replicator equation</topic><topic>Search distributions</topic><topic>Wright's equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mühlenbein, H.</creatorcontrib><creatorcontrib>Mahnig, Th</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mühlenbein, H.</au><au>Mahnig, Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary computation and Wright's equation</atitle><jtitle>Theoretical computer science</jtitle><date>2002-09-25</date><risdate>2002</risdate><volume>287</volume><issue>1</issue><spage>145</spage><epage>165</epage><pages>145-165</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>In this paper, Wright's equation formulated in 1931 is proven and applied to evolutionary computation. Wright's equation shows that evolution is doing gradient ascent in a landscape defined by the average fitness of the population. The average fitness W is defined in terms of marginal gene frequencies p i . Wright's equation is only approximately valid in population genetics, but it exactly describes the behavior of our univariate marginal distribution algorithm (UMDA). We apply Wright's equation to a specific fitness function defined by Wright. Furthermore we introduce mutation into Wright's equation and UMDA. We show that mutation moves the stable attractors from the boundary into the interior. We compare Wright's equation with the diversified replicator equation. We show that a fast version of Wright's equation gives very good results for optimizing a class of binary fitness functions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(02)00098-1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2002-09, Vol.287 (1), p.145-165
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_27788876
source ScienceDirect Journals
subjects Factorization of distribution
Genetic algorithms
Linkage equilibrium
Maximum principle
Microscopic and macroscopic evolutionary algorithm
Replicator equation
Search distributions
Wright's equation
title Evolutionary computation and Wright's equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20computation%20and%20Wright's%20equation&rft.jtitle=Theoretical%20computer%20science&rft.au=M%C3%BChlenbein,%20H.&rft.date=2002-09-25&rft.volume=287&rft.issue=1&rft.spage=145&rft.epage=165&rft.pages=145-165&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/S0304-3975(02)00098-1&rft_dat=%3Cproquest_cross%3E27788876%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-f425177ef4e3b453ff83077fc662b4f3a8ccb557a0a22f1b407f6d809640d7163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27788876&rft_id=info:pmid/&rfr_iscdi=true