Loading…

Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage

Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the e...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-05, Vol.19 (20), p.e2300440-n/a
Main Authors: Yang, Liuqian, Cao, Zhen, Yin, Jian, Wang, Chunyan, Ouyang, Dandan, Zhu, Hui, Wang, Yanan, Cavallo, Luigi, Alshareef, Husam N., Yin, Jiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3
cites cdi_FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3
container_end_page n/a
container_issue 20
container_start_page e2300440
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Yang, Liuqian
Cao, Zhen
Yin, Jian
Wang, Chunyan
Ouyang, Dandan
Zhu, Hui
Wang, Yanan
Cavallo, Luigi
Alshareef, Husam N.
Yin, Jiao
description Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the electric conductivity. Herein, boron element is additionally introduced to construct 3D interconnected B, N co‐doped carbon nanosheets to remedy these adverse effects. This work demonstrates that boron incorporation preferentially converts pyrrolic N species into BN sites with lower adsorption energy barrier, further enhancing the capacity of B, N co‐doped carbon. Meanwhile, the electric conductivity is modulated via the conjugation effect between the electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics of potassium ions. The optimized samples deliver a high specific capacity, high rate capability, and long‐term cyclic stability (532.1 mAh g−1 at 0.05 A g−1, 162.6 mAh g−1 at 2 A g−1 over 8000 cycles). Furthermore, hybrid capacitors using the B, N co‐doped carbon anode deliver a high energy and power density with excellent cycle life. This study demonstrates a promising approach using BN sites for adsorptive capacity and electric conductivity enhancement in carbon materials for electrochemical energy storage applications. Abundant BN sites are constructed in 3D interconnected carbon nanosheets to comprehensively boosted K+ storage performance. Upon the addition of B, pyrrolic N species are preferentially converted into BN sites with lower adsorption energy barrier, enhancing the capacity of samples. Meanwhile, the electric conductivity is modulated via the conjugation effect between electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics.
doi_str_mv 10.1002/smll.202300440
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2778972447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778972447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3</originalsourceid><addsrcrecordid>eNqFkU9uEzEUhy1ERdvAliWyxKabBP_r2F6WEaWVQkFKWVtvZjyJq5lxsD1E2fUI3KEH4S5cgCvgKG2Q2LD6Pel9_vTkH0KvKZlRQti72HfdjBHGCRGCPEMntKB8Wiimnx9mSo7RaYx3hHDKhHyBjnmhiCqUOkGb0g8xhbFObljiixzfLX7_--HnDV64ZCN2Ay4hVH7ANzD4uLI2Rdz6gK_ccvXr_kcJa6hd2mIYGnwJMeFyBWG5s936DYQGf_EJYnRjj6-zZZF8gKV9iY5a6KJ99ZgT9PXyw215NZ1__nhdXsynNZecTKmsJC8kB6qt1ari502dU4k8QyVaAk0rNKeqJZLVtsnbWmgrCTsHzUTFJ-hs710H_220MZnexdp2HQzWj9EwKZWWTAiZ0bf_oHd-DEO-zjBFBSuozv88QbM9VQcfY7CtWQfXQ9gaSsyuErOrxBwqyQ_ePGrHqrfNAX_qIAN6D2xcZ7f_0ZnFp_n8r_wPUaOafQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814261902</pqid></control><display><type>article</type><title>Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yang, Liuqian ; Cao, Zhen ; Yin, Jian ; Wang, Chunyan ; Ouyang, Dandan ; Zhu, Hui ; Wang, Yanan ; Cavallo, Luigi ; Alshareef, Husam N. ; Yin, Jiao</creator><creatorcontrib>Yang, Liuqian ; Cao, Zhen ; Yin, Jian ; Wang, Chunyan ; Ouyang, Dandan ; Zhu, Hui ; Wang, Yanan ; Cavallo, Luigi ; Alshareef, Husam N. ; Yin, Jiao</creatorcontrib><description>Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the electric conductivity. Herein, boron element is additionally introduced to construct 3D interconnected B, N co‐doped carbon nanosheets to remedy these adverse effects. This work demonstrates that boron incorporation preferentially converts pyrrolic N species into BN sites with lower adsorption energy barrier, further enhancing the capacity of B, N co‐doped carbon. Meanwhile, the electric conductivity is modulated via the conjugation effect between the electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics of potassium ions. The optimized samples deliver a high specific capacity, high rate capability, and long‐term cyclic stability (532.1 mAh g−1 at 0.05 A g−1, 162.6 mAh g−1 at 2 A g−1 over 8000 cycles). Furthermore, hybrid capacitors using the B, N co‐doped carbon anode deliver a high energy and power density with excellent cycle life. This study demonstrates a promising approach using BN sites for adsorptive capacity and electric conductivity enhancement in carbon materials for electrochemical energy storage applications. Abundant BN sites are constructed in 3D interconnected carbon nanosheets to comprehensively boosted K+ storage performance. Upon the addition of B, pyrrolic N species are preferentially converted into BN sites with lower adsorption energy barrier, enhancing the capacity of samples. Meanwhile, the electric conductivity is modulated via the conjugation effect between electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202300440</identifier><identifier>PMID: 36808688</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Adsorptivity ; Boron ; B–N sites ; Carbon ; carbon nanosheets ; Charge transfer ; Conjugation ; Doping ; electric conductivity ; Electrical resistivity ; Energy storage ; heteroatom doping ; Ion storage ; Nanosheets ; Nanotechnology ; Nitrogen ; Potassium ; potassium ion storage</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (20), p.e2300440-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3</citedby><cites>FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3</cites><orcidid>0000-0001-7196-9087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36808688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Liuqian</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Yin, Jian</creatorcontrib><creatorcontrib>Wang, Chunyan</creatorcontrib><creatorcontrib>Ouyang, Dandan</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Cavallo, Luigi</creatorcontrib><creatorcontrib>Alshareef, Husam N.</creatorcontrib><creatorcontrib>Yin, Jiao</creatorcontrib><title>Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the electric conductivity. Herein, boron element is additionally introduced to construct 3D interconnected B, N co‐doped carbon nanosheets to remedy these adverse effects. This work demonstrates that boron incorporation preferentially converts pyrrolic N species into BN sites with lower adsorption energy barrier, further enhancing the capacity of B, N co‐doped carbon. Meanwhile, the electric conductivity is modulated via the conjugation effect between the electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics of potassium ions. The optimized samples deliver a high specific capacity, high rate capability, and long‐term cyclic stability (532.1 mAh g−1 at 0.05 A g−1, 162.6 mAh g−1 at 2 A g−1 over 8000 cycles). Furthermore, hybrid capacitors using the B, N co‐doped carbon anode deliver a high energy and power density with excellent cycle life. This study demonstrates a promising approach using BN sites for adsorptive capacity and electric conductivity enhancement in carbon materials for electrochemical energy storage applications. Abundant BN sites are constructed in 3D interconnected carbon nanosheets to comprehensively boosted K+ storage performance. Upon the addition of B, pyrrolic N species are preferentially converted into BN sites with lower adsorption energy barrier, enhancing the capacity of samples. Meanwhile, the electric conductivity is modulated via the conjugation effect between electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics.</description><subject>Adsorption</subject><subject>Adsorptivity</subject><subject>Boron</subject><subject>B–N sites</subject><subject>Carbon</subject><subject>carbon nanosheets</subject><subject>Charge transfer</subject><subject>Conjugation</subject><subject>Doping</subject><subject>electric conductivity</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>heteroatom doping</subject><subject>Ion storage</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Potassium</subject><subject>potassium ion storage</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU9uEzEUhy1ERdvAliWyxKabBP_r2F6WEaWVQkFKWVtvZjyJq5lxsD1E2fUI3KEH4S5cgCvgKG2Q2LD6Pel9_vTkH0KvKZlRQti72HfdjBHGCRGCPEMntKB8Wiimnx9mSo7RaYx3hHDKhHyBjnmhiCqUOkGb0g8xhbFObljiixzfLX7_--HnDV64ZCN2Ay4hVH7ANzD4uLI2Rdz6gK_ccvXr_kcJa6hd2mIYGnwJMeFyBWG5s936DYQGf_EJYnRjj6-zZZF8gKV9iY5a6KJ99ZgT9PXyw215NZ1__nhdXsynNZecTKmsJC8kB6qt1ari502dU4k8QyVaAk0rNKeqJZLVtsnbWmgrCTsHzUTFJ-hs710H_220MZnexdp2HQzWj9EwKZWWTAiZ0bf_oHd-DEO-zjBFBSuozv88QbM9VQcfY7CtWQfXQ9gaSsyuErOrxBwqyQ_ePGrHqrfNAX_qIAN6D2xcZ7f_0ZnFp_n8r_wPUaOafQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Yang, Liuqian</creator><creator>Cao, Zhen</creator><creator>Yin, Jian</creator><creator>Wang, Chunyan</creator><creator>Ouyang, Dandan</creator><creator>Zhu, Hui</creator><creator>Wang, Yanan</creator><creator>Cavallo, Luigi</creator><creator>Alshareef, Husam N.</creator><creator>Yin, Jiao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7196-9087</orcidid></search><sort><creationdate>20230501</creationdate><title>Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage</title><author>Yang, Liuqian ; Cao, Zhen ; Yin, Jian ; Wang, Chunyan ; Ouyang, Dandan ; Zhu, Hui ; Wang, Yanan ; Cavallo, Luigi ; Alshareef, Husam N. ; Yin, Jiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Adsorptivity</topic><topic>Boron</topic><topic>B–N sites</topic><topic>Carbon</topic><topic>carbon nanosheets</topic><topic>Charge transfer</topic><topic>Conjugation</topic><topic>Doping</topic><topic>electric conductivity</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>heteroatom doping</topic><topic>Ion storage</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Potassium</topic><topic>potassium ion storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Liuqian</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Yin, Jian</creatorcontrib><creatorcontrib>Wang, Chunyan</creatorcontrib><creatorcontrib>Ouyang, Dandan</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Cavallo, Luigi</creatorcontrib><creatorcontrib>Alshareef, Husam N.</creatorcontrib><creatorcontrib>Yin, Jiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Liuqian</au><au>Cao, Zhen</au><au>Yin, Jian</au><au>Wang, Chunyan</au><au>Ouyang, Dandan</au><au>Zhu, Hui</au><au>Wang, Yanan</au><au>Cavallo, Luigi</au><au>Alshareef, Husam N.</au><au>Yin, Jiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>20</issue><spage>e2300440</spage><epage>n/a</epage><pages>e2300440-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the electric conductivity. Herein, boron element is additionally introduced to construct 3D interconnected B, N co‐doped carbon nanosheets to remedy these adverse effects. This work demonstrates that boron incorporation preferentially converts pyrrolic N species into BN sites with lower adsorption energy barrier, further enhancing the capacity of B, N co‐doped carbon. Meanwhile, the electric conductivity is modulated via the conjugation effect between the electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics of potassium ions. The optimized samples deliver a high specific capacity, high rate capability, and long‐term cyclic stability (532.1 mAh g−1 at 0.05 A g−1, 162.6 mAh g−1 at 2 A g−1 over 8000 cycles). Furthermore, hybrid capacitors using the B, N co‐doped carbon anode deliver a high energy and power density with excellent cycle life. This study demonstrates a promising approach using BN sites for adsorptive capacity and electric conductivity enhancement in carbon materials for electrochemical energy storage applications. Abundant BN sites are constructed in 3D interconnected carbon nanosheets to comprehensively boosted K+ storage performance. Upon the addition of B, pyrrolic N species are preferentially converted into BN sites with lower adsorption energy barrier, enhancing the capacity of samples. Meanwhile, the electric conductivity is modulated via the conjugation effect between electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36808688</pmid><doi>10.1002/smll.202300440</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7196-9087</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (20), p.e2300440-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2778972447
source Wiley-Blackwell Read & Publish Collection
subjects Adsorption
Adsorptivity
Boron
B–N sites
Carbon
carbon nanosheets
Charge transfer
Conjugation
Doping
electric conductivity
Electrical resistivity
Energy storage
heteroatom doping
Ion storage
Nanosheets
Nanotechnology
Nitrogen
Potassium
potassium ion storage
title Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Active%20B%EF%A3%BFN%20Sites%20in%20Carbon%20Nanosheets%20for%20High%E2%80%90Capacity%20and%20Fast%20Charging%20Toward%20Potassium%20Ion%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yang,%20Liuqian&rft.date=2023-05-01&rft.volume=19&rft.issue=20&rft.spage=e2300440&rft.epage=n/a&rft.pages=e2300440-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202300440&rft_dat=%3Cproquest_cross%3E2778972447%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814261902&rft_id=info:pmid/36808688&rfr_iscdi=true