Loading…
Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage
Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the e...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-05, Vol.19 (20), p.e2300440-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3 |
container_end_page | n/a |
container_issue | 20 |
container_start_page | e2300440 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Yang, Liuqian Cao, Zhen Yin, Jian Wang, Chunyan Ouyang, Dandan Zhu, Hui Wang, Yanan Cavallo, Luigi Alshareef, Husam N. Yin, Jiao |
description | Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the electric conductivity. Herein, boron element is additionally introduced to construct 3D interconnected B, N co‐doped carbon nanosheets to remedy these adverse effects. This work demonstrates that boron incorporation preferentially converts pyrrolic N species into BN sites with lower adsorption energy barrier, further enhancing the capacity of B, N co‐doped carbon. Meanwhile, the electric conductivity is modulated via the conjugation effect between the electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics of potassium ions. The optimized samples deliver a high specific capacity, high rate capability, and long‐term cyclic stability (532.1 mAh g−1 at 0.05 A g−1, 162.6 mAh g−1 at 2 A g−1 over 8000 cycles). Furthermore, hybrid capacitors using the B, N co‐doped carbon anode deliver a high energy and power density with excellent cycle life. This study demonstrates a promising approach using BN sites for adsorptive capacity and electric conductivity enhancement in carbon materials for electrochemical energy storage applications.
Abundant BN sites are constructed in 3D interconnected carbon nanosheets to comprehensively boosted K+ storage performance. Upon the addition of B, pyrrolic N species are preferentially converted into BN sites with lower adsorption energy barrier, enhancing the capacity of samples. Meanwhile, the electric conductivity is modulated via the conjugation effect between electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics. |
doi_str_mv | 10.1002/smll.202300440 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2778972447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778972447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3</originalsourceid><addsrcrecordid>eNqFkU9uEzEUhy1ERdvAliWyxKabBP_r2F6WEaWVQkFKWVtvZjyJq5lxsD1E2fUI3KEH4S5cgCvgKG2Q2LD6Pel9_vTkH0KvKZlRQti72HfdjBHGCRGCPEMntKB8Wiimnx9mSo7RaYx3hHDKhHyBjnmhiCqUOkGb0g8xhbFObljiixzfLX7_--HnDV64ZCN2Ay4hVH7ANzD4uLI2Rdz6gK_ccvXr_kcJa6hd2mIYGnwJMeFyBWG5s936DYQGf_EJYnRjj6-zZZF8gKV9iY5a6KJ99ZgT9PXyw215NZ1__nhdXsynNZecTKmsJC8kB6qt1ari502dU4k8QyVaAk0rNKeqJZLVtsnbWmgrCTsHzUTFJ-hs710H_220MZnexdp2HQzWj9EwKZWWTAiZ0bf_oHd-DEO-zjBFBSuozv88QbM9VQcfY7CtWQfXQ9gaSsyuErOrxBwqyQ_ePGrHqrfNAX_qIAN6D2xcZ7f_0ZnFp_n8r_wPUaOafQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814261902</pqid></control><display><type>article</type><title>Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yang, Liuqian ; Cao, Zhen ; Yin, Jian ; Wang, Chunyan ; Ouyang, Dandan ; Zhu, Hui ; Wang, Yanan ; Cavallo, Luigi ; Alshareef, Husam N. ; Yin, Jiao</creator><creatorcontrib>Yang, Liuqian ; Cao, Zhen ; Yin, Jian ; Wang, Chunyan ; Ouyang, Dandan ; Zhu, Hui ; Wang, Yanan ; Cavallo, Luigi ; Alshareef, Husam N. ; Yin, Jiao</creatorcontrib><description>Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the electric conductivity. Herein, boron element is additionally introduced to construct 3D interconnected B, N co‐doped carbon nanosheets to remedy these adverse effects. This work demonstrates that boron incorporation preferentially converts pyrrolic N species into BN sites with lower adsorption energy barrier, further enhancing the capacity of B, N co‐doped carbon. Meanwhile, the electric conductivity is modulated via the conjugation effect between the electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics of potassium ions. The optimized samples deliver a high specific capacity, high rate capability, and long‐term cyclic stability (532.1 mAh g−1 at 0.05 A g−1, 162.6 mAh g−1 at 2 A g−1 over 8000 cycles). Furthermore, hybrid capacitors using the B, N co‐doped carbon anode deliver a high energy and power density with excellent cycle life. This study demonstrates a promising approach using BN sites for adsorptive capacity and electric conductivity enhancement in carbon materials for electrochemical energy storage applications.
Abundant BN sites are constructed in 3D interconnected carbon nanosheets to comprehensively boosted K+ storage performance. Upon the addition of B, pyrrolic N species are preferentially converted into BN sites with lower adsorption energy barrier, enhancing the capacity of samples. Meanwhile, the electric conductivity is modulated via the conjugation effect between electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202300440</identifier><identifier>PMID: 36808688</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Adsorptivity ; Boron ; B–N sites ; Carbon ; carbon nanosheets ; Charge transfer ; Conjugation ; Doping ; electric conductivity ; Electrical resistivity ; Energy storage ; heteroatom doping ; Ion storage ; Nanosheets ; Nanotechnology ; Nitrogen ; Potassium ; potassium ion storage</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (20), p.e2300440-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3</citedby><cites>FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3</cites><orcidid>0000-0001-7196-9087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36808688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Liuqian</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Yin, Jian</creatorcontrib><creatorcontrib>Wang, Chunyan</creatorcontrib><creatorcontrib>Ouyang, Dandan</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Cavallo, Luigi</creatorcontrib><creatorcontrib>Alshareef, Husam N.</creatorcontrib><creatorcontrib>Yin, Jiao</creatorcontrib><title>Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the electric conductivity. Herein, boron element is additionally introduced to construct 3D interconnected B, N co‐doped carbon nanosheets to remedy these adverse effects. This work demonstrates that boron incorporation preferentially converts pyrrolic N species into BN sites with lower adsorption energy barrier, further enhancing the capacity of B, N co‐doped carbon. Meanwhile, the electric conductivity is modulated via the conjugation effect between the electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics of potassium ions. The optimized samples deliver a high specific capacity, high rate capability, and long‐term cyclic stability (532.1 mAh g−1 at 0.05 A g−1, 162.6 mAh g−1 at 2 A g−1 over 8000 cycles). Furthermore, hybrid capacitors using the B, N co‐doped carbon anode deliver a high energy and power density with excellent cycle life. This study demonstrates a promising approach using BN sites for adsorptive capacity and electric conductivity enhancement in carbon materials for electrochemical energy storage applications.
Abundant BN sites are constructed in 3D interconnected carbon nanosheets to comprehensively boosted K+ storage performance. Upon the addition of B, pyrrolic N species are preferentially converted into BN sites with lower adsorption energy barrier, enhancing the capacity of samples. Meanwhile, the electric conductivity is modulated via the conjugation effect between electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics.</description><subject>Adsorption</subject><subject>Adsorptivity</subject><subject>Boron</subject><subject>B–N sites</subject><subject>Carbon</subject><subject>carbon nanosheets</subject><subject>Charge transfer</subject><subject>Conjugation</subject><subject>Doping</subject><subject>electric conductivity</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>heteroatom doping</subject><subject>Ion storage</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Potassium</subject><subject>potassium ion storage</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU9uEzEUhy1ERdvAliWyxKabBP_r2F6WEaWVQkFKWVtvZjyJq5lxsD1E2fUI3KEH4S5cgCvgKG2Q2LD6Pel9_vTkH0KvKZlRQti72HfdjBHGCRGCPEMntKB8Wiimnx9mSo7RaYx3hHDKhHyBjnmhiCqUOkGb0g8xhbFObljiixzfLX7_--HnDV64ZCN2Ay4hVH7ANzD4uLI2Rdz6gK_ccvXr_kcJa6hd2mIYGnwJMeFyBWG5s936DYQGf_EJYnRjj6-zZZF8gKV9iY5a6KJ99ZgT9PXyw215NZ1__nhdXsynNZecTKmsJC8kB6qt1ari502dU4k8QyVaAk0rNKeqJZLVtsnbWmgrCTsHzUTFJ-hs710H_220MZnexdp2HQzWj9EwKZWWTAiZ0bf_oHd-DEO-zjBFBSuozv88QbM9VQcfY7CtWQfXQ9gaSsyuErOrxBwqyQ_ePGrHqrfNAX_qIAN6D2xcZ7f_0ZnFp_n8r_wPUaOafQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Yang, Liuqian</creator><creator>Cao, Zhen</creator><creator>Yin, Jian</creator><creator>Wang, Chunyan</creator><creator>Ouyang, Dandan</creator><creator>Zhu, Hui</creator><creator>Wang, Yanan</creator><creator>Cavallo, Luigi</creator><creator>Alshareef, Husam N.</creator><creator>Yin, Jiao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7196-9087</orcidid></search><sort><creationdate>20230501</creationdate><title>Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage</title><author>Yang, Liuqian ; Cao, Zhen ; Yin, Jian ; Wang, Chunyan ; Ouyang, Dandan ; Zhu, Hui ; Wang, Yanan ; Cavallo, Luigi ; Alshareef, Husam N. ; Yin, Jiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Adsorptivity</topic><topic>Boron</topic><topic>B–N sites</topic><topic>Carbon</topic><topic>carbon nanosheets</topic><topic>Charge transfer</topic><topic>Conjugation</topic><topic>Doping</topic><topic>electric conductivity</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>heteroatom doping</topic><topic>Ion storage</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Potassium</topic><topic>potassium ion storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Liuqian</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Yin, Jian</creatorcontrib><creatorcontrib>Wang, Chunyan</creatorcontrib><creatorcontrib>Ouyang, Dandan</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Cavallo, Luigi</creatorcontrib><creatorcontrib>Alshareef, Husam N.</creatorcontrib><creatorcontrib>Yin, Jiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Liuqian</au><au>Cao, Zhen</au><au>Yin, Jian</au><au>Wang, Chunyan</au><au>Ouyang, Dandan</au><au>Zhu, Hui</au><au>Wang, Yanan</au><au>Cavallo, Luigi</au><au>Alshareef, Husam N.</au><au>Yin, Jiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>20</issue><spage>e2300440</spage><epage>n/a</epage><pages>e2300440-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the electric conductivity. Herein, boron element is additionally introduced to construct 3D interconnected B, N co‐doped carbon nanosheets to remedy these adverse effects. This work demonstrates that boron incorporation preferentially converts pyrrolic N species into BN sites with lower adsorption energy barrier, further enhancing the capacity of B, N co‐doped carbon. Meanwhile, the electric conductivity is modulated via the conjugation effect between the electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics of potassium ions. The optimized samples deliver a high specific capacity, high rate capability, and long‐term cyclic stability (532.1 mAh g−1 at 0.05 A g−1, 162.6 mAh g−1 at 2 A g−1 over 8000 cycles). Furthermore, hybrid capacitors using the B, N co‐doped carbon anode deliver a high energy and power density with excellent cycle life. This study demonstrates a promising approach using BN sites for adsorptive capacity and electric conductivity enhancement in carbon materials for electrochemical energy storage applications.
Abundant BN sites are constructed in 3D interconnected carbon nanosheets to comprehensively boosted K+ storage performance. Upon the addition of B, pyrrolic N species are preferentially converted into BN sites with lower adsorption energy barrier, enhancing the capacity of samples. Meanwhile, the electric conductivity is modulated via the conjugation effect between electron‐rich N and electron‐deficient B, accelerating the charge‐transfer kinetics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36808688</pmid><doi>10.1002/smll.202300440</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7196-9087</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (20), p.e2300440-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2778972447 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adsorption Adsorptivity Boron B–N sites Carbon carbon nanosheets Charge transfer Conjugation Doping electric conductivity Electrical resistivity Energy storage heteroatom doping Ion storage Nanosheets Nanotechnology Nitrogen Potassium potassium ion storage |
title | Constructing Active BN Sites in Carbon Nanosheets for High‐Capacity and Fast Charging Toward Potassium Ion Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Active%20B%EF%A3%BFN%20Sites%20in%20Carbon%20Nanosheets%20for%20High%E2%80%90Capacity%20and%20Fast%20Charging%20Toward%20Potassium%20Ion%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yang,%20Liuqian&rft.date=2023-05-01&rft.volume=19&rft.issue=20&rft.spage=e2300440&rft.epage=n/a&rft.pages=e2300440-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202300440&rft_dat=%3Cproquest_cross%3E2778972447%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3730-17b73673a19ee98b35dce988498bab4f0adf49318f072ceddcec49e7025a924b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814261902&rft_id=info:pmid/36808688&rfr_iscdi=true |