Loading…

Effect of pressure on the electronic structure of antiferromagnetic and paramagnetic YNiO3: the role of disproportionation

The dependence of electronic properties of quantum materials on external controls (e.g., pressure and temperature) is one of the fundamentals of neuromorphic computing, sensors, etc. Until recently, it has been believed that the theoretical description of such compounds cannot be accomplished using...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2023-03, Vol.25 (9), p.7003-7009
Main Authors: Wlazło, Mateusz, Malyi, Oleksandr I
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7009
container_issue 9
container_start_page 7003
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Wlazło, Mateusz
Malyi, Oleksandr I
description The dependence of electronic properties of quantum materials on external controls (e.g., pressure and temperature) is one of the fundamentals of neuromorphic computing, sensors, etc. Until recently, it has been believed that the theoretical description of such compounds cannot be accomplished using “traditional” density functional theory, and more advanced methods like dynamic mean-field theory should be utilized instead. Focusing here on the example of long-range ordered antiferromagnetic and paramagnetic YNiO3 phases, we show the interplay between spin and structural motifs under pressure and their impact on electronic properties. We successfully describe the insulating nature of both YNiO3 phases and the role of symmetry-breaking motifs in the band gap opening. Moreover, by analyzing the pressure-dependent distribution of local motifs, we show that external pressure can significantly reduce the band gap energy of both phases, originating from the reduction of structural and magnetic disproportionation – change in the distribution of local motifs. These results thus demonstrate that some of the experimental observations in quantum materials (e.g., YNiO3 compounds) can be fully understood without accounting for dynamic correlation.
doi_str_mv 10.1039/d2cp05618f
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2778980207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780686762</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-4a0e9c579eeb1e743c6fba2a28ce287a7b8fd59038c9571b897aa926539e71633</originalsourceid><addsrcrecordid>eNpdjj1PwzAQhi0EEqWw8AsssbAE_JH4gw1VLSBVdIGBqXKcM6RK7WA7C7-eEFAHlrvT-7z33iF0SckNJVzfNsz2pBJUuSM0o6XghSaqPD7MUpyis5R2hBBaUT5DX0vnwGYcHO4jpDREwMHj_AEYuhHE4FuLU46DzRNz2PjcOogx7M27hzxi4xvcm2gOwttzu-F3U0oM3bTVtKmPoQ8xt8Gbn3KOTpzpElz89Tl6XS1fFo_FevPwtLhfFz2jIhelIaBtJTVATUGW3ApXG2aYssCUNLJWrqk04crqStJaaWmMZqLiGiQVnM_R9W_ueP9zgJS3-zZZ6DrjIQxpy6RUWhFG5Gi9-mfdhSH68bvRpYhQQgrGvwHafG6V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780686762</pqid></control><display><type>article</type><title>Effect of pressure on the electronic structure of antiferromagnetic and paramagnetic YNiO3: the role of disproportionation</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Wlazło, Mateusz ; Malyi, Oleksandr I</creator><creatorcontrib>Wlazło, Mateusz ; Malyi, Oleksandr I</creatorcontrib><description>The dependence of electronic properties of quantum materials on external controls (e.g., pressure and temperature) is one of the fundamentals of neuromorphic computing, sensors, etc. Until recently, it has been believed that the theoretical description of such compounds cannot be accomplished using “traditional” density functional theory, and more advanced methods like dynamic mean-field theory should be utilized instead. Focusing here on the example of long-range ordered antiferromagnetic and paramagnetic YNiO3 phases, we show the interplay between spin and structural motifs under pressure and their impact on electronic properties. We successfully describe the insulating nature of both YNiO3 phases and the role of symmetry-breaking motifs in the band gap opening. Moreover, by analyzing the pressure-dependent distribution of local motifs, we show that external pressure can significantly reduce the band gap energy of both phases, originating from the reduction of structural and magnetic disproportionation – change in the distribution of local motifs. These results thus demonstrate that some of the experimental observations in quantum materials (e.g., YNiO3 compounds) can be fully understood without accounting for dynamic correlation.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp05618f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiferromagnetism ; Broken symmetry ; Density functional theory ; Disproportionation ; Electronic properties ; Electronic structure ; Energy gap ; External pressure ; Insulation ; Mean field theory ; Phases ; Pressure dependence ; Pressure effects</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-03, Vol.25 (9), p.7003-7009</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wlazło, Mateusz</creatorcontrib><creatorcontrib>Malyi, Oleksandr I</creatorcontrib><title>Effect of pressure on the electronic structure of antiferromagnetic and paramagnetic YNiO3: the role of disproportionation</title><title>Physical chemistry chemical physics : PCCP</title><description>The dependence of electronic properties of quantum materials on external controls (e.g., pressure and temperature) is one of the fundamentals of neuromorphic computing, sensors, etc. Until recently, it has been believed that the theoretical description of such compounds cannot be accomplished using “traditional” density functional theory, and more advanced methods like dynamic mean-field theory should be utilized instead. Focusing here on the example of long-range ordered antiferromagnetic and paramagnetic YNiO3 phases, we show the interplay between spin and structural motifs under pressure and their impact on electronic properties. We successfully describe the insulating nature of both YNiO3 phases and the role of symmetry-breaking motifs in the band gap opening. Moreover, by analyzing the pressure-dependent distribution of local motifs, we show that external pressure can significantly reduce the band gap energy of both phases, originating from the reduction of structural and magnetic disproportionation – change in the distribution of local motifs. These results thus demonstrate that some of the experimental observations in quantum materials (e.g., YNiO3 compounds) can be fully understood without accounting for dynamic correlation.</description><subject>Antiferromagnetism</subject><subject>Broken symmetry</subject><subject>Density functional theory</subject><subject>Disproportionation</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>External pressure</subject><subject>Insulation</subject><subject>Mean field theory</subject><subject>Phases</subject><subject>Pressure dependence</subject><subject>Pressure effects</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdjj1PwzAQhi0EEqWw8AsssbAE_JH4gw1VLSBVdIGBqXKcM6RK7WA7C7-eEFAHlrvT-7z33iF0SckNJVzfNsz2pBJUuSM0o6XghSaqPD7MUpyis5R2hBBaUT5DX0vnwGYcHO4jpDREwMHj_AEYuhHE4FuLU46DzRNz2PjcOogx7M27hzxi4xvcm2gOwttzu-F3U0oM3bTVtKmPoQ8xt8Gbn3KOTpzpElz89Tl6XS1fFo_FevPwtLhfFz2jIhelIaBtJTVATUGW3ApXG2aYssCUNLJWrqk04crqStJaaWmMZqLiGiQVnM_R9W_ueP9zgJS3-zZZ6DrjIQxpy6RUWhFG5Gi9-mfdhSH68bvRpYhQQgrGvwHafG6V</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wlazło, Mateusz</creator><creator>Malyi, Oleksandr I</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230301</creationdate><title>Effect of pressure on the electronic structure of antiferromagnetic and paramagnetic YNiO3: the role of disproportionation</title><author>Wlazło, Mateusz ; Malyi, Oleksandr I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-4a0e9c579eeb1e743c6fba2a28ce287a7b8fd59038c9571b897aa926539e71633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiferromagnetism</topic><topic>Broken symmetry</topic><topic>Density functional theory</topic><topic>Disproportionation</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>External pressure</topic><topic>Insulation</topic><topic>Mean field theory</topic><topic>Phases</topic><topic>Pressure dependence</topic><topic>Pressure effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wlazło, Mateusz</creatorcontrib><creatorcontrib>Malyi, Oleksandr I</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wlazło, Mateusz</au><au>Malyi, Oleksandr I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of pressure on the electronic structure of antiferromagnetic and paramagnetic YNiO3: the role of disproportionation</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>25</volume><issue>9</issue><spage>7003</spage><epage>7009</epage><pages>7003-7009</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The dependence of electronic properties of quantum materials on external controls (e.g., pressure and temperature) is one of the fundamentals of neuromorphic computing, sensors, etc. Until recently, it has been believed that the theoretical description of such compounds cannot be accomplished using “traditional” density functional theory, and more advanced methods like dynamic mean-field theory should be utilized instead. Focusing here on the example of long-range ordered antiferromagnetic and paramagnetic YNiO3 phases, we show the interplay between spin and structural motifs under pressure and their impact on electronic properties. We successfully describe the insulating nature of both YNiO3 phases and the role of symmetry-breaking motifs in the band gap opening. Moreover, by analyzing the pressure-dependent distribution of local motifs, we show that external pressure can significantly reduce the band gap energy of both phases, originating from the reduction of structural and magnetic disproportionation – change in the distribution of local motifs. These results thus demonstrate that some of the experimental observations in quantum materials (e.g., YNiO3 compounds) can be fully understood without accounting for dynamic correlation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp05618f</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-03, Vol.25 (9), p.7003-7009
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2778980207
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Antiferromagnetism
Broken symmetry
Density functional theory
Disproportionation
Electronic properties
Electronic structure
Energy gap
External pressure
Insulation
Mean field theory
Phases
Pressure dependence
Pressure effects
title Effect of pressure on the electronic structure of antiferromagnetic and paramagnetic YNiO3: the role of disproportionation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20pressure%20on%20the%20electronic%20structure%20of%20antiferromagnetic%20and%20paramagnetic%20YNiO3:%20the%20role%20of%20disproportionation&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wlaz%C5%82o,%20Mateusz&rft.date=2023-03-01&rft.volume=25&rft.issue=9&rft.spage=7003&rft.epage=7009&rft.pages=7003-7009&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp05618f&rft_dat=%3Cproquest%3E2780686762%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p216t-4a0e9c579eeb1e743c6fba2a28ce287a7b8fd59038c9571b897aa926539e71633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780686762&rft_id=info:pmid/&rfr_iscdi=true