Loading…

The evolution of the marine carbonate factory

Calcium carbonate formation is the primary pathway by which carbon is returned from the ocean–atmosphere system to the solid Earth 1 , 2 . The removal of dissolved inorganic carbon from seawater by precipitation of carbonate minerals—the marine carbonate factory—plays a critical role in shaping mari...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2023-03, Vol.615 (7951), p.265-269
Main Authors: Wang, Jiuyuan, Tarhan, Lidya G., Jacobson, Andrew D., Oehlert, Amanda M., Planavsky, Noah J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a398t-b848f383073dbe396cf93f258b3eae5e72437b86c64a5fe6cf8732206b6d9dab3
cites cdi_FETCH-LOGICAL-a398t-b848f383073dbe396cf93f258b3eae5e72437b86c64a5fe6cf8732206b6d9dab3
container_end_page 269
container_issue 7951
container_start_page 265
container_title Nature (London)
container_volume 615
creator Wang, Jiuyuan
Tarhan, Lidya G.
Jacobson, Andrew D.
Oehlert, Amanda M.
Planavsky, Noah J.
description Calcium carbonate formation is the primary pathway by which carbon is returned from the ocean–atmosphere system to the solid Earth 1 , 2 . The removal of dissolved inorganic carbon from seawater by precipitation of carbonate minerals—the marine carbonate factory—plays a critical role in shaping marine biogeochemical cycling 1 , 2 . A paucity of empirical constraints has led to widely divergent views on how the marine carbonate factory has changed over time 3 – 5 . Here we use geochemical insights from stable strontium isotopes to provide a new perspective on the evolution of the marine carbonate factory and carbonate mineral saturation states. Although the production of carbonates in the surface ocean and in shallow seafloor settings have been widely considered the predominant carbonate sinks for most of the history of the Earth 6 , we propose that alternative processes—such as porewater production of authigenic carbonates—may have represented a major carbonate sink throughout the Precambrian. Our results also suggest that the rise of the skeletal carbonate factory decreased seawater carbonate saturation states. Geochemical insights from a dataset of carbonate stable strontium isotopes suggest that porewater production of authigenic carbonates may have been an overlooked carbonate sink for much of Earth’s history.
doi_str_mv 10.1038/s41586-022-05654-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779340798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779340798</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-b848f383073dbe396cf93f258b3eae5e72437b86c64a5fe6cf8732206b6d9dab3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlms3n7FGKX1DwUs8h2U10S7upya7Qf290_QAPngZmnnkneRA6LcllSRhcJV4KkJhQiomQgmOxh6YlVxJzCWofTQmhgAkwOUFHKa0IIaJU_BBNmISSVRKmCC9fXOHewnro29AVwRd9bmxMbDtX1Cba0JneFd7UfYi7Y3TgzTq5k686Q0-3N8v5PV483j3MrxfYsAp6bIGDZ8CIYo11-VDtK-apAMucccIpypmyIGvJjfAuj0ExSom0sqkaY9kMXYy52xheB5d6vWlT7dZr07kwJE2VqhgnqoKMnv9BV2GIXX5dpkBSToHITNGRqmNIKTqvt7HNv9zpkugPmXqUqbNM_SlTi7x09hU92I1rfla-7WWAjUDKo-7Zxd_b_8S-A7Yrfas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786242806</pqid></control><display><type>article</type><title>The evolution of the marine carbonate factory</title><source>Nature</source><creator>Wang, Jiuyuan ; Tarhan, Lidya G. ; Jacobson, Andrew D. ; Oehlert, Amanda M. ; Planavsky, Noah J.</creator><creatorcontrib>Wang, Jiuyuan ; Tarhan, Lidya G. ; Jacobson, Andrew D. ; Oehlert, Amanda M. ; Planavsky, Noah J.</creatorcontrib><description>Calcium carbonate formation is the primary pathway by which carbon is returned from the ocean–atmosphere system to the solid Earth 1 , 2 . The removal of dissolved inorganic carbon from seawater by precipitation of carbonate minerals—the marine carbonate factory—plays a critical role in shaping marine biogeochemical cycling 1 , 2 . A paucity of empirical constraints has led to widely divergent views on how the marine carbonate factory has changed over time 3 – 5 . Here we use geochemical insights from stable strontium isotopes to provide a new perspective on the evolution of the marine carbonate factory and carbonate mineral saturation states. Although the production of carbonates in the surface ocean and in shallow seafloor settings have been widely considered the predominant carbonate sinks for most of the history of the Earth 6 , we propose that alternative processes—such as porewater production of authigenic carbonates—may have represented a major carbonate sink throughout the Precambrian. Our results also suggest that the rise of the skeletal carbonate factory decreased seawater carbonate saturation states. Geochemical insights from a dataset of carbonate stable strontium isotopes suggest that porewater production of authigenic carbonates may have been an overlooked carbonate sink for much of Earth’s history.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05654-5</identifier><identifier>PMID: 36813968</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/47/4113 ; 704/829/827 ; Animals ; Aquatic Organisms - chemistry ; Aquatic Organisms - metabolism ; Archives &amp; records ; Biogeochemical cycles ; Calcium carbonate ; Calcium Carbonate - analysis ; Calcium Carbonate - chemistry ; Calcium Carbonate - metabolism ; Carbon ; Carbon - analysis ; Carbon - chemistry ; Carbon - metabolism ; Carbon Sequestration ; Carbonates ; Carbonates - analysis ; Carbonates - chemistry ; Carbonates - metabolism ; Dissolved inorganic carbon ; Divergence ; Evolution ; Geologic Sediments - analysis ; Geologic Sediments - chemistry ; History, Ancient ; Humanities and Social Sciences ; Isotopes ; Mass spectrometry ; Minerals ; multidisciplinary ; Ocean floor ; Ocean-atmosphere interaction ; Oceans ; Pore water ; Precambrian ; Ratios ; Science ; Science (multidisciplinary) ; Scientific imaging ; Seawater ; Seawater - analysis ; Seawater - chemistry ; Strontium ; Strontium Isotopes</subject><ispartof>Nature (London), 2023-03, Vol.615 (7951), p.265-269</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Mar 9, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-b848f383073dbe396cf93f258b3eae5e72437b86c64a5fe6cf8732206b6d9dab3</citedby><cites>FETCH-LOGICAL-a398t-b848f383073dbe396cf93f258b3eae5e72437b86c64a5fe6cf8732206b6d9dab3</cites><orcidid>0000-0002-8583-4076 ; 0000-0002-1832-958X ; 0000-0002-5878-929X ; 0000-0001-5849-8508 ; 0000-0002-5069-1466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36813968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jiuyuan</creatorcontrib><creatorcontrib>Tarhan, Lidya G.</creatorcontrib><creatorcontrib>Jacobson, Andrew D.</creatorcontrib><creatorcontrib>Oehlert, Amanda M.</creatorcontrib><creatorcontrib>Planavsky, Noah J.</creatorcontrib><title>The evolution of the marine carbonate factory</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Calcium carbonate formation is the primary pathway by which carbon is returned from the ocean–atmosphere system to the solid Earth 1 , 2 . The removal of dissolved inorganic carbon from seawater by precipitation of carbonate minerals—the marine carbonate factory—plays a critical role in shaping marine biogeochemical cycling 1 , 2 . A paucity of empirical constraints has led to widely divergent views on how the marine carbonate factory has changed over time 3 – 5 . Here we use geochemical insights from stable strontium isotopes to provide a new perspective on the evolution of the marine carbonate factory and carbonate mineral saturation states. Although the production of carbonates in the surface ocean and in shallow seafloor settings have been widely considered the predominant carbonate sinks for most of the history of the Earth 6 , we propose that alternative processes—such as porewater production of authigenic carbonates—may have represented a major carbonate sink throughout the Precambrian. Our results also suggest that the rise of the skeletal carbonate factory decreased seawater carbonate saturation states. Geochemical insights from a dataset of carbonate stable strontium isotopes suggest that porewater production of authigenic carbonates may have been an overlooked carbonate sink for much of Earth’s history.</description><subject>704/47/4113</subject><subject>704/829/827</subject><subject>Animals</subject><subject>Aquatic Organisms - chemistry</subject><subject>Aquatic Organisms - metabolism</subject><subject>Archives &amp; records</subject><subject>Biogeochemical cycles</subject><subject>Calcium carbonate</subject><subject>Calcium Carbonate - analysis</subject><subject>Calcium Carbonate - chemistry</subject><subject>Calcium Carbonate - metabolism</subject><subject>Carbon</subject><subject>Carbon - analysis</subject><subject>Carbon - chemistry</subject><subject>Carbon - metabolism</subject><subject>Carbon Sequestration</subject><subject>Carbonates</subject><subject>Carbonates - analysis</subject><subject>Carbonates - chemistry</subject><subject>Carbonates - metabolism</subject><subject>Dissolved inorganic carbon</subject><subject>Divergence</subject><subject>Evolution</subject><subject>Geologic Sediments - analysis</subject><subject>Geologic Sediments - chemistry</subject><subject>History, Ancient</subject><subject>Humanities and Social Sciences</subject><subject>Isotopes</subject><subject>Mass spectrometry</subject><subject>Minerals</subject><subject>multidisciplinary</subject><subject>Ocean floor</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceans</subject><subject>Pore water</subject><subject>Precambrian</subject><subject>Ratios</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>Seawater</subject><subject>Seawater - analysis</subject><subject>Seawater - chemistry</subject><subject>Strontium</subject><subject>Strontium Isotopes</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlms3n7FGKX1DwUs8h2U10S7upya7Qf290_QAPngZmnnkneRA6LcllSRhcJV4KkJhQiomQgmOxh6YlVxJzCWofTQmhgAkwOUFHKa0IIaJU_BBNmISSVRKmCC9fXOHewnro29AVwRd9bmxMbDtX1Cba0JneFd7UfYi7Y3TgzTq5k686Q0-3N8v5PV483j3MrxfYsAp6bIGDZ8CIYo11-VDtK-apAMucccIpypmyIGvJjfAuj0ExSom0sqkaY9kMXYy52xheB5d6vWlT7dZr07kwJE2VqhgnqoKMnv9BV2GIXX5dpkBSToHITNGRqmNIKTqvt7HNv9zpkugPmXqUqbNM_SlTi7x09hU92I1rfla-7WWAjUDKo-7Zxd_b_8S-A7Yrfas</recordid><startdate>20230309</startdate><enddate>20230309</enddate><creator>Wang, Jiuyuan</creator><creator>Tarhan, Lidya G.</creator><creator>Jacobson, Andrew D.</creator><creator>Oehlert, Amanda M.</creator><creator>Planavsky, Noah J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8583-4076</orcidid><orcidid>https://orcid.org/0000-0002-1832-958X</orcidid><orcidid>https://orcid.org/0000-0002-5878-929X</orcidid><orcidid>https://orcid.org/0000-0001-5849-8508</orcidid><orcidid>https://orcid.org/0000-0002-5069-1466</orcidid></search><sort><creationdate>20230309</creationdate><title>The evolution of the marine carbonate factory</title><author>Wang, Jiuyuan ; Tarhan, Lidya G. ; Jacobson, Andrew D. ; Oehlert, Amanda M. ; Planavsky, Noah J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-b848f383073dbe396cf93f258b3eae5e72437b86c64a5fe6cf8732206b6d9dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>704/47/4113</topic><topic>704/829/827</topic><topic>Animals</topic><topic>Aquatic Organisms - chemistry</topic><topic>Aquatic Organisms - metabolism</topic><topic>Archives &amp; records</topic><topic>Biogeochemical cycles</topic><topic>Calcium carbonate</topic><topic>Calcium Carbonate - analysis</topic><topic>Calcium Carbonate - chemistry</topic><topic>Calcium Carbonate - metabolism</topic><topic>Carbon</topic><topic>Carbon - analysis</topic><topic>Carbon - chemistry</topic><topic>Carbon - metabolism</topic><topic>Carbon Sequestration</topic><topic>Carbonates</topic><topic>Carbonates - analysis</topic><topic>Carbonates - chemistry</topic><topic>Carbonates - metabolism</topic><topic>Dissolved inorganic carbon</topic><topic>Divergence</topic><topic>Evolution</topic><topic>Geologic Sediments - analysis</topic><topic>Geologic Sediments - chemistry</topic><topic>History, Ancient</topic><topic>Humanities and Social Sciences</topic><topic>Isotopes</topic><topic>Mass spectrometry</topic><topic>Minerals</topic><topic>multidisciplinary</topic><topic>Ocean floor</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceans</topic><topic>Pore water</topic><topic>Precambrian</topic><topic>Ratios</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>Seawater</topic><topic>Seawater - analysis</topic><topic>Seawater - chemistry</topic><topic>Strontium</topic><topic>Strontium Isotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiuyuan</creatorcontrib><creatorcontrib>Tarhan, Lidya G.</creatorcontrib><creatorcontrib>Jacobson, Andrew D.</creatorcontrib><creatorcontrib>Oehlert, Amanda M.</creatorcontrib><creatorcontrib>Planavsky, Noah J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiuyuan</au><au>Tarhan, Lidya G.</au><au>Jacobson, Andrew D.</au><au>Oehlert, Amanda M.</au><au>Planavsky, Noah J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of the marine carbonate factory</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-03-09</date><risdate>2023</risdate><volume>615</volume><issue>7951</issue><spage>265</spage><epage>269</epage><pages>265-269</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Calcium carbonate formation is the primary pathway by which carbon is returned from the ocean–atmosphere system to the solid Earth 1 , 2 . The removal of dissolved inorganic carbon from seawater by precipitation of carbonate minerals—the marine carbonate factory—plays a critical role in shaping marine biogeochemical cycling 1 , 2 . A paucity of empirical constraints has led to widely divergent views on how the marine carbonate factory has changed over time 3 – 5 . Here we use geochemical insights from stable strontium isotopes to provide a new perspective on the evolution of the marine carbonate factory and carbonate mineral saturation states. Although the production of carbonates in the surface ocean and in shallow seafloor settings have been widely considered the predominant carbonate sinks for most of the history of the Earth 6 , we propose that alternative processes—such as porewater production of authigenic carbonates—may have represented a major carbonate sink throughout the Precambrian. Our results also suggest that the rise of the skeletal carbonate factory decreased seawater carbonate saturation states. Geochemical insights from a dataset of carbonate stable strontium isotopes suggest that porewater production of authigenic carbonates may have been an overlooked carbonate sink for much of Earth’s history.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36813968</pmid><doi>10.1038/s41586-022-05654-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8583-4076</orcidid><orcidid>https://orcid.org/0000-0002-1832-958X</orcidid><orcidid>https://orcid.org/0000-0002-5878-929X</orcidid><orcidid>https://orcid.org/0000-0001-5849-8508</orcidid><orcidid>https://orcid.org/0000-0002-5069-1466</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-03, Vol.615 (7951), p.265-269
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2779340798
source Nature
subjects 704/47/4113
704/829/827
Animals
Aquatic Organisms - chemistry
Aquatic Organisms - metabolism
Archives & records
Biogeochemical cycles
Calcium carbonate
Calcium Carbonate - analysis
Calcium Carbonate - chemistry
Calcium Carbonate - metabolism
Carbon
Carbon - analysis
Carbon - chemistry
Carbon - metabolism
Carbon Sequestration
Carbonates
Carbonates - analysis
Carbonates - chemistry
Carbonates - metabolism
Dissolved inorganic carbon
Divergence
Evolution
Geologic Sediments - analysis
Geologic Sediments - chemistry
History, Ancient
Humanities and Social Sciences
Isotopes
Mass spectrometry
Minerals
multidisciplinary
Ocean floor
Ocean-atmosphere interaction
Oceans
Pore water
Precambrian
Ratios
Science
Science (multidisciplinary)
Scientific imaging
Seawater
Seawater - analysis
Seawater - chemistry
Strontium
Strontium Isotopes
title The evolution of the marine carbonate factory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20the%20marine%20carbonate%20factory&rft.jtitle=Nature%20(London)&rft.au=Wang,%20Jiuyuan&rft.date=2023-03-09&rft.volume=615&rft.issue=7951&rft.spage=265&rft.epage=269&rft.pages=265-269&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05654-5&rft_dat=%3Cproquest_cross%3E2779340798%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a398t-b848f383073dbe396cf93f258b3eae5e72437b86c64a5fe6cf8732206b6d9dab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786242806&rft_id=info:pmid/36813968&rfr_iscdi=true