Loading…
One-pot synthesis of magnetic cellulose nanocrystal and its post-functionalization for doxycycline adsorption
The composite of magnetite (Fe3O4) and cellulose nanocrystal (CNC) is considered a potential adsorbent for water treatment and environmental remediation. In the current study, a one-pot hydrothermal procedure was utilized for magnetic cellulose nanocrystal (MCNC) development from microcrystalline ce...
Saved in:
Published in: | Carbohydrate polymers 2023-05, Vol.308, p.120619-120619, Article 120619 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The composite of magnetite (Fe3O4) and cellulose nanocrystal (CNC) is considered a potential adsorbent for water treatment and environmental remediation. In the current study, a one-pot hydrothermal procedure was utilized for magnetic cellulose nanocrystal (MCNC) development from microcrystalline cellulose (MCC) in the presence of ferric chloride, ferrous chloride, urea, and hydrochloric acid. The x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy analysis confirmed the presence of CNC and Fe3O4, while transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis verified their respective sizes (< 400 nm and ≤ 20 nm) in the generated composite. To have an efficient adsorption activity for doxycycline hyclate (DOX), the produced MCNC was post-treated using chloroacetic acid (CAA), chlorosulfonic acid (CSA), or iodobenzene (IB). The introduction of carboxylate, sulfonate, and phenyl groups in the post-treatment was confirmed by FTIR and XPS analysis. Such post treatments decreased the crystallinity index and thermal stability of the samples but improved their DOX adsorption capacity. The adsorption analysis at different pHs revealed the increase in the adsorption capacity by reducing the basicity of the medium due to decreasing electrostatic repulsions and inducing strong attractions.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2023.120619 |