Loading…
Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies
SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic pictur...
Saved in:
Published in: | The Lancet. Digital health 2023-03, Vol.5 (3), p.e168-e173 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63 |
container_end_page | e173 |
container_issue | 3 |
container_start_page | e168 |
container_title | The Lancet. Digital health |
container_volume | 5 |
creator | Cruz Rivera, Samantha, PhD Liu, Xiaoxuan, MBChB PhD Hughes, Sarah E, PhD Dunster, Helen, BSc Manna, Elaine, BSc Denniston, Alastair K, Prof Calvert, Melanie J, Prof |
description | SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing. |
doi_str_mv | 10.1016/S2589-7500(22)00252-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780074127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589750022002527</els_id><sourcerecordid>2780074127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63</originalsourceid><addsrcrecordid>eNqFkE1PHSEUhkljU431J7RhqYvRA_MBs6lpjFUTky7argkXDvdiZ4ZbYEz892XutcZ04wpCnvc9nIeQTwzOGbDu4gdvZV-JFuCU8zMA3vJKvCNHL88Hr-6H5CSlBygUZ7UQ4gM5rDvJZQf9EbHX4wqt9dOabnX2OOUq4jbEjJaGOZswYqI607xBukEdMw2OlsM7b7weqJ8yDoNf42R2wJA3ldERaUazmcIQ1h7TR_Le6SHhyfN5TH59u_55dVvdf7-5u_p6X5mmE7myTd26ru2ddR1Kg7YGaIVrgDWN7CW6Tkrd1Zo5B33NyoItdwjCcFjJkqyPyem-dxvDnxlTVqNPpvxPTxjmpLiQAKJhXBS03aMmhpQiOrWNftTxSTFQi2O1c6wWgYpztXOsltzn5xHzakT7kvpntACXewDLoo8eo0rGL3asj2iyssG_OeLLfw1m8JM3eviNT5gewhynYlExlUpoX7J0cL5rEPVfQaCgzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780074127</pqid></control><display><type>article</type><title>Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies</title><source>ScienceDirect Freedom Collection</source><creator>Cruz Rivera, Samantha, PhD ; Liu, Xiaoxuan, MBChB PhD ; Hughes, Sarah E, PhD ; Dunster, Helen, BSc ; Manna, Elaine, BSc ; Denniston, Alastair K, Prof ; Calvert, Melanie J, Prof</creator><creatorcontrib>Cruz Rivera, Samantha, PhD ; Liu, Xiaoxuan, MBChB PhD ; Hughes, Sarah E, PhD ; Dunster, Helen, BSc ; Manna, Elaine, BSc ; Denniston, Alastair K, Prof ; Calvert, Melanie J, Prof</creatorcontrib><description>SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing.</description><identifier>ISSN: 2589-7500</identifier><identifier>EISSN: 2589-7500</identifier><identifier>DOI: 10.1016/S2589-7500(22)00252-7</identifier><identifier>PMID: 36828609</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Data Collection ; Delivery of Health Care ; Heart ; Humans ; Informatics ; Internal Medicine ; Patient Reported Outcome Measures ; Public Health</subject><ispartof>The Lancet. Digital health, 2023-03, Vol.5 (3), p.e168-e173</ispartof><rights>The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license</rights><rights>2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63</citedby><cites>FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589750022002527$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27898,27899,45753</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36828609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz Rivera, Samantha, PhD</creatorcontrib><creatorcontrib>Liu, Xiaoxuan, MBChB PhD</creatorcontrib><creatorcontrib>Hughes, Sarah E, PhD</creatorcontrib><creatorcontrib>Dunster, Helen, BSc</creatorcontrib><creatorcontrib>Manna, Elaine, BSc</creatorcontrib><creatorcontrib>Denniston, Alastair K, Prof</creatorcontrib><creatorcontrib>Calvert, Melanie J, Prof</creatorcontrib><title>Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies</title><title>The Lancet. Digital health</title><addtitle>Lancet Digit Health</addtitle><description>SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing.</description><subject>Artificial Intelligence</subject><subject>Data Collection</subject><subject>Delivery of Health Care</subject><subject>Heart</subject><subject>Humans</subject><subject>Informatics</subject><subject>Internal Medicine</subject><subject>Patient Reported Outcome Measures</subject><subject>Public Health</subject><issn>2589-7500</issn><issn>2589-7500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PHSEUhkljU431J7RhqYvRA_MBs6lpjFUTky7argkXDvdiZ4ZbYEz892XutcZ04wpCnvc9nIeQTwzOGbDu4gdvZV-JFuCU8zMA3vJKvCNHL88Hr-6H5CSlBygUZ7UQ4gM5rDvJZQf9EbHX4wqt9dOabnX2OOUq4jbEjJaGOZswYqI607xBukEdMw2OlsM7b7weqJ8yDoNf42R2wJA3ldERaUazmcIQ1h7TR_Le6SHhyfN5TH59u_55dVvdf7-5u_p6X5mmE7myTd26ru2ddR1Kg7YGaIVrgDWN7CW6Tkrd1Zo5B33NyoItdwjCcFjJkqyPyem-dxvDnxlTVqNPpvxPTxjmpLiQAKJhXBS03aMmhpQiOrWNftTxSTFQi2O1c6wWgYpztXOsltzn5xHzakT7kvpntACXewDLoo8eo0rGL3asj2iyssG_OeLLfw1m8JM3eviNT5gewhynYlExlUpoX7J0cL5rEPVfQaCgzw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Cruz Rivera, Samantha, PhD</creator><creator>Liu, Xiaoxuan, MBChB PhD</creator><creator>Hughes, Sarah E, PhD</creator><creator>Dunster, Helen, BSc</creator><creator>Manna, Elaine, BSc</creator><creator>Denniston, Alastair K, Prof</creator><creator>Calvert, Melanie J, Prof</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230301</creationdate><title>Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies</title><author>Cruz Rivera, Samantha, PhD ; Liu, Xiaoxuan, MBChB PhD ; Hughes, Sarah E, PhD ; Dunster, Helen, BSc ; Manna, Elaine, BSc ; Denniston, Alastair K, Prof ; Calvert, Melanie J, Prof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Data Collection</topic><topic>Delivery of Health Care</topic><topic>Heart</topic><topic>Humans</topic><topic>Informatics</topic><topic>Internal Medicine</topic><topic>Patient Reported Outcome Measures</topic><topic>Public Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz Rivera, Samantha, PhD</creatorcontrib><creatorcontrib>Liu, Xiaoxuan, MBChB PhD</creatorcontrib><creatorcontrib>Hughes, Sarah E, PhD</creatorcontrib><creatorcontrib>Dunster, Helen, BSc</creatorcontrib><creatorcontrib>Manna, Elaine, BSc</creatorcontrib><creatorcontrib>Denniston, Alastair K, Prof</creatorcontrib><creatorcontrib>Calvert, Melanie J, Prof</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Lancet. Digital health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz Rivera, Samantha, PhD</au><au>Liu, Xiaoxuan, MBChB PhD</au><au>Hughes, Sarah E, PhD</au><au>Dunster, Helen, BSc</au><au>Manna, Elaine, BSc</au><au>Denniston, Alastair K, Prof</au><au>Calvert, Melanie J, Prof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies</atitle><jtitle>The Lancet. Digital health</jtitle><addtitle>Lancet Digit Health</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>5</volume><issue>3</issue><spage>e168</spage><epage>e173</epage><pages>e168-e173</pages><issn>2589-7500</issn><eissn>2589-7500</eissn><abstract>SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36828609</pmid><doi>10.1016/S2589-7500(22)00252-7</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2589-7500 |
ispartof | The Lancet. Digital health, 2023-03, Vol.5 (3), p.e168-e173 |
issn | 2589-7500 2589-7500 |
language | eng |
recordid | cdi_proquest_miscellaneous_2780074127 |
source | ScienceDirect Freedom Collection |
subjects | Artificial Intelligence Data Collection Delivery of Health Care Heart Humans Informatics Internal Medicine Patient Reported Outcome Measures Public Health |
title | Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedding%20patient-reported%20outcomes%20at%20the%20heart%20of%20artificial%20intelligence%20health-care%20technologies&rft.jtitle=The%20Lancet.%20Digital%20health&rft.au=Cruz%20Rivera,%20Samantha,%20PhD&rft.date=2023-03-01&rft.volume=5&rft.issue=3&rft.spage=e168&rft.epage=e173&rft.pages=e168-e173&rft.issn=2589-7500&rft.eissn=2589-7500&rft_id=info:doi/10.1016/S2589-7500(22)00252-7&rft_dat=%3Cproquest_cross%3E2780074127%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780074127&rft_id=info:pmid/36828609&rfr_iscdi=true |