Loading…

Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies

SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic pictur...

Full description

Saved in:
Bibliographic Details
Published in:The Lancet. Digital health 2023-03, Vol.5 (3), p.e168-e173
Main Authors: Cruz Rivera, Samantha, PhD, Liu, Xiaoxuan, MBChB PhD, Hughes, Sarah E, PhD, Dunster, Helen, BSc, Manna, Elaine, BSc, Denniston, Alastair K, Prof, Calvert, Melanie J, Prof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63
cites cdi_FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63
container_end_page e173
container_issue 3
container_start_page e168
container_title The Lancet. Digital health
container_volume 5
creator Cruz Rivera, Samantha, PhD
Liu, Xiaoxuan, MBChB PhD
Hughes, Sarah E, PhD
Dunster, Helen, BSc
Manna, Elaine, BSc
Denniston, Alastair K, Prof
Calvert, Melanie J, Prof
description SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing.
doi_str_mv 10.1016/S2589-7500(22)00252-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780074127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589750022002527</els_id><sourcerecordid>2780074127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63</originalsourceid><addsrcrecordid>eNqFkE1PHSEUhkljU431J7RhqYvRA_MBs6lpjFUTky7argkXDvdiZ4ZbYEz892XutcZ04wpCnvc9nIeQTwzOGbDu4gdvZV-JFuCU8zMA3vJKvCNHL88Hr-6H5CSlBygUZ7UQ4gM5rDvJZQf9EbHX4wqt9dOabnX2OOUq4jbEjJaGOZswYqI607xBukEdMw2OlsM7b7weqJ8yDoNf42R2wJA3ldERaUazmcIQ1h7TR_Le6SHhyfN5TH59u_55dVvdf7-5u_p6X5mmE7myTd26ru2ddR1Kg7YGaIVrgDWN7CW6Tkrd1Zo5B33NyoItdwjCcFjJkqyPyem-dxvDnxlTVqNPpvxPTxjmpLiQAKJhXBS03aMmhpQiOrWNftTxSTFQi2O1c6wWgYpztXOsltzn5xHzakT7kvpntACXewDLoo8eo0rGL3asj2iyssG_OeLLfw1m8JM3eviNT5gewhynYlExlUpoX7J0cL5rEPVfQaCgzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780074127</pqid></control><display><type>article</type><title>Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies</title><source>ScienceDirect Freedom Collection</source><creator>Cruz Rivera, Samantha, PhD ; Liu, Xiaoxuan, MBChB PhD ; Hughes, Sarah E, PhD ; Dunster, Helen, BSc ; Manna, Elaine, BSc ; Denniston, Alastair K, Prof ; Calvert, Melanie J, Prof</creator><creatorcontrib>Cruz Rivera, Samantha, PhD ; Liu, Xiaoxuan, MBChB PhD ; Hughes, Sarah E, PhD ; Dunster, Helen, BSc ; Manna, Elaine, BSc ; Denniston, Alastair K, Prof ; Calvert, Melanie J, Prof</creatorcontrib><description>SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing.</description><identifier>ISSN: 2589-7500</identifier><identifier>EISSN: 2589-7500</identifier><identifier>DOI: 10.1016/S2589-7500(22)00252-7</identifier><identifier>PMID: 36828609</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Data Collection ; Delivery of Health Care ; Heart ; Humans ; Informatics ; Internal Medicine ; Patient Reported Outcome Measures ; Public Health</subject><ispartof>The Lancet. Digital health, 2023-03, Vol.5 (3), p.e168-e173</ispartof><rights>The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license</rights><rights>2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63</citedby><cites>FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589750022002527$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27898,27899,45753</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36828609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz Rivera, Samantha, PhD</creatorcontrib><creatorcontrib>Liu, Xiaoxuan, MBChB PhD</creatorcontrib><creatorcontrib>Hughes, Sarah E, PhD</creatorcontrib><creatorcontrib>Dunster, Helen, BSc</creatorcontrib><creatorcontrib>Manna, Elaine, BSc</creatorcontrib><creatorcontrib>Denniston, Alastair K, Prof</creatorcontrib><creatorcontrib>Calvert, Melanie J, Prof</creatorcontrib><title>Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies</title><title>The Lancet. Digital health</title><addtitle>Lancet Digit Health</addtitle><description>SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing.</description><subject>Artificial Intelligence</subject><subject>Data Collection</subject><subject>Delivery of Health Care</subject><subject>Heart</subject><subject>Humans</subject><subject>Informatics</subject><subject>Internal Medicine</subject><subject>Patient Reported Outcome Measures</subject><subject>Public Health</subject><issn>2589-7500</issn><issn>2589-7500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PHSEUhkljU431J7RhqYvRA_MBs6lpjFUTky7argkXDvdiZ4ZbYEz892XutcZ04wpCnvc9nIeQTwzOGbDu4gdvZV-JFuCU8zMA3vJKvCNHL88Hr-6H5CSlBygUZ7UQ4gM5rDvJZQf9EbHX4wqt9dOabnX2OOUq4jbEjJaGOZswYqI607xBukEdMw2OlsM7b7weqJ8yDoNf42R2wJA3ldERaUazmcIQ1h7TR_Le6SHhyfN5TH59u_55dVvdf7-5u_p6X5mmE7myTd26ru2ddR1Kg7YGaIVrgDWN7CW6Tkrd1Zo5B33NyoItdwjCcFjJkqyPyem-dxvDnxlTVqNPpvxPTxjmpLiQAKJhXBS03aMmhpQiOrWNftTxSTFQi2O1c6wWgYpztXOsltzn5xHzakT7kvpntACXewDLoo8eo0rGL3asj2iyssG_OeLLfw1m8JM3eviNT5gewhynYlExlUpoX7J0cL5rEPVfQaCgzw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Cruz Rivera, Samantha, PhD</creator><creator>Liu, Xiaoxuan, MBChB PhD</creator><creator>Hughes, Sarah E, PhD</creator><creator>Dunster, Helen, BSc</creator><creator>Manna, Elaine, BSc</creator><creator>Denniston, Alastair K, Prof</creator><creator>Calvert, Melanie J, Prof</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230301</creationdate><title>Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies</title><author>Cruz Rivera, Samantha, PhD ; Liu, Xiaoxuan, MBChB PhD ; Hughes, Sarah E, PhD ; Dunster, Helen, BSc ; Manna, Elaine, BSc ; Denniston, Alastair K, Prof ; Calvert, Melanie J, Prof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Data Collection</topic><topic>Delivery of Health Care</topic><topic>Heart</topic><topic>Humans</topic><topic>Informatics</topic><topic>Internal Medicine</topic><topic>Patient Reported Outcome Measures</topic><topic>Public Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz Rivera, Samantha, PhD</creatorcontrib><creatorcontrib>Liu, Xiaoxuan, MBChB PhD</creatorcontrib><creatorcontrib>Hughes, Sarah E, PhD</creatorcontrib><creatorcontrib>Dunster, Helen, BSc</creatorcontrib><creatorcontrib>Manna, Elaine, BSc</creatorcontrib><creatorcontrib>Denniston, Alastair K, Prof</creatorcontrib><creatorcontrib>Calvert, Melanie J, Prof</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Lancet. Digital health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz Rivera, Samantha, PhD</au><au>Liu, Xiaoxuan, MBChB PhD</au><au>Hughes, Sarah E, PhD</au><au>Dunster, Helen, BSc</au><au>Manna, Elaine, BSc</au><au>Denniston, Alastair K, Prof</au><au>Calvert, Melanie J, Prof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies</atitle><jtitle>The Lancet. Digital health</jtitle><addtitle>Lancet Digit Health</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>5</volume><issue>3</issue><spage>e168</spage><epage>e173</epage><pages>e168-e173</pages><issn>2589-7500</issn><eissn>2589-7500</eissn><abstract>SummaryIntegration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36828609</pmid><doi>10.1016/S2589-7500(22)00252-7</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-7500
ispartof The Lancet. Digital health, 2023-03, Vol.5 (3), p.e168-e173
issn 2589-7500
2589-7500
language eng
recordid cdi_proquest_miscellaneous_2780074127
source ScienceDirect Freedom Collection
subjects Artificial Intelligence
Data Collection
Delivery of Health Care
Heart
Humans
Informatics
Internal Medicine
Patient Reported Outcome Measures
Public Health
title Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedding%20patient-reported%20outcomes%20at%20the%20heart%20of%20artificial%20intelligence%20health-care%20technologies&rft.jtitle=The%20Lancet.%20Digital%20health&rft.au=Cruz%20Rivera,%20Samantha,%20PhD&rft.date=2023-03-01&rft.volume=5&rft.issue=3&rft.spage=e168&rft.epage=e173&rft.pages=e168-e173&rft.issn=2589-7500&rft.eissn=2589-7500&rft_id=info:doi/10.1016/S2589-7500(22)00252-7&rft_dat=%3Cproquest_cross%3E2780074127%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-d435f659fdf6e8ced30057f40144898ef688a63a1ff093125852fe07c20b85f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780074127&rft_id=info:pmid/36828609&rfr_iscdi=true