Loading…
Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation
Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modificati...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-05, Vol.19 (21), p.e2207638-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3 |
container_end_page | n/a |
container_issue | 21 |
container_start_page | e2207638 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Hou, Liuyan Liu, Ting Wang, Helin Bai, Miao Tang, Xiaoyu Wang, Zhiqiao Zhang, Min Li, Shaowen Wang, Tianyu Zhou, Kefan Ma, Yue |
description | Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na+ reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close‐to‐unit value. Detailed kinetics analysis observes that the Na+ diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (< 0.1 V vs. Na+/Na), which accelerates the rate‐limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm−2) with the NaVPO4F cathode (≈10.3 mg cm−2) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low‐temperature behavior till −40 °C as well as the maximized power output of 1500 W kg−1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na+ storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high‐rate SIB prototyping.
A multiscale modification strategy of hard carbon (HC) is proposed by exquisitely tuning the microstructure on the particle level as well as supplementing extra Na+ reservoir for the electrode through an insulation‐buffer‐layer assisted presodiation therapy. The coulombic efficiency of HC anode is precisely controlled till the close‐to‐unit value and Na+ diffusivity is drastically enhanced by two orders of magnitude at the low‐potential region. |
doi_str_mv | 10.1002/smll.202207638 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780481942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780481942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3</originalsourceid><addsrcrecordid>eNqFkctuEzEUhkcIRC-wZYkssUFqE3yZjD3LEkFTKVzUFLaWxz6TunLs1PaAsuMR2PJ6PEmdpgSJDSsf-Xz_f87RX1UvCB4TjOmbtHJuTDGlmDdMPKoOSUPYqBG0fbyvCT6ojlK6wZgRWvOn1QFrRM0opYfVr7chpGz9EuVrQJfwDWKynYNTNLPL698_fl6qDOijOkGLHKJaApqqteqss3mDQn-vmqloynfsgkdnPhhAX6267yw2HuLSlgG66OOg8xCVQ1fKuhC3Q5UvyuBzDM6BQZ8jpGCsyjb4Z9WTXrkEzx_e4-rL-3dX09lo_un8Yno2H2nGmRhxaHs6KfcoTDrStAYm_aTrse6MMaSmfQNGkE4bKoBToglTwEnPmtLjXGl2XL3e-a5juB0gZbmySYNzykMYkqRc4FqQtqYFffUPehOG6Mt2kgrC25rXuC3UeEfpGFKK0Mt1tCsVN5JguQ1NbkOT-9CK4OWD7dCtwOzxPykVoN0B362DzX_s5OLDfP7X_A4phqYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817947409</pqid></control><display><type>article</type><title>Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation</title><source>Wiley</source><creator>Hou, Liuyan ; Liu, Ting ; Wang, Helin ; Bai, Miao ; Tang, Xiaoyu ; Wang, Zhiqiao ; Zhang, Min ; Li, Shaowen ; Wang, Tianyu ; Zhou, Kefan ; Ma, Yue</creator><creatorcontrib>Hou, Liuyan ; Liu, Ting ; Wang, Helin ; Bai, Miao ; Tang, Xiaoyu ; Wang, Zhiqiao ; Zhang, Min ; Li, Shaowen ; Wang, Tianyu ; Zhou, Kefan ; Ma, Yue</creatorcontrib><description>Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na+ reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close‐to‐unit value. Detailed kinetics analysis observes that the Na+ diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (< 0.1 V vs. Na+/Na), which accelerates the rate‐limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm−2) with the NaVPO4F cathode (≈10.3 mg cm−2) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low‐temperature behavior till −40 °C as well as the maximized power output of 1500 W kg−1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na+ storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high‐rate SIB prototyping.
A multiscale modification strategy of hard carbon (HC) is proposed by exquisitely tuning the microstructure on the particle level as well as supplementing extra Na+ reservoir for the electrode through an insulation‐buffer‐layer assisted presodiation therapy. The coulombic efficiency of HC anode is precisely controlled till the close‐to‐unit value and Na+ diffusivity is drastically enhanced by two orders of magnitude at the low‐potential region.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202207638</identifier><identifier>PMID: 36843222</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Commercialization ; Diffusion rate ; high‐rate performance ; homogeneous presodiation strategy ; initial coulombic efficiency ; Kinetics ; microstructural tailoring ; Na diffusion kinetics ; Nanotechnology ; Prototyping ; Sodium ; Sodium-ion batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (21), p.e2207638-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3</citedby><cites>FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3</cites><orcidid>0000-0002-1005-9386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36843222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Liuyan</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Wang, Helin</creatorcontrib><creatorcontrib>Bai, Miao</creatorcontrib><creatorcontrib>Tang, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Zhiqiao</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Li, Shaowen</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Zhou, Kefan</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><title>Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na+ reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close‐to‐unit value. Detailed kinetics analysis observes that the Na+ diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (< 0.1 V vs. Na+/Na), which accelerates the rate‐limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm−2) with the NaVPO4F cathode (≈10.3 mg cm−2) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low‐temperature behavior till −40 °C as well as the maximized power output of 1500 W kg−1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na+ storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high‐rate SIB prototyping.
A multiscale modification strategy of hard carbon (HC) is proposed by exquisitely tuning the microstructure on the particle level as well as supplementing extra Na+ reservoir for the electrode through an insulation‐buffer‐layer assisted presodiation therapy. The coulombic efficiency of HC anode is precisely controlled till the close‐to‐unit value and Na+ diffusivity is drastically enhanced by two orders of magnitude at the low‐potential region.</description><subject>Anodes</subject><subject>Commercialization</subject><subject>Diffusion rate</subject><subject>high‐rate performance</subject><subject>homogeneous presodiation strategy</subject><subject>initial coulombic efficiency</subject><subject>Kinetics</subject><subject>microstructural tailoring</subject><subject>Na diffusion kinetics</subject><subject>Nanotechnology</subject><subject>Prototyping</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUhkcIRC-wZYkssUFqE3yZjD3LEkFTKVzUFLaWxz6TunLs1PaAsuMR2PJ6PEmdpgSJDSsf-Xz_f87RX1UvCB4TjOmbtHJuTDGlmDdMPKoOSUPYqBG0fbyvCT6ojlK6wZgRWvOn1QFrRM0opYfVr7chpGz9EuVrQJfwDWKynYNTNLPL698_fl6qDOijOkGLHKJaApqqteqss3mDQn-vmqloynfsgkdnPhhAX6267yw2HuLSlgG66OOg8xCVQ1fKuhC3Q5UvyuBzDM6BQZ8jpGCsyjb4Z9WTXrkEzx_e4-rL-3dX09lo_un8Yno2H2nGmRhxaHs6KfcoTDrStAYm_aTrse6MMaSmfQNGkE4bKoBToglTwEnPmtLjXGl2XL3e-a5juB0gZbmySYNzykMYkqRc4FqQtqYFffUPehOG6Mt2kgrC25rXuC3UeEfpGFKK0Mt1tCsVN5JguQ1NbkOT-9CK4OWD7dCtwOzxPykVoN0B362DzX_s5OLDfP7X_A4phqYk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Hou, Liuyan</creator><creator>Liu, Ting</creator><creator>Wang, Helin</creator><creator>Bai, Miao</creator><creator>Tang, Xiaoyu</creator><creator>Wang, Zhiqiao</creator><creator>Zhang, Min</creator><creator>Li, Shaowen</creator><creator>Wang, Tianyu</creator><creator>Zhou, Kefan</creator><creator>Ma, Yue</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1005-9386</orcidid></search><sort><creationdate>20230501</creationdate><title>Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation</title><author>Hou, Liuyan ; Liu, Ting ; Wang, Helin ; Bai, Miao ; Tang, Xiaoyu ; Wang, Zhiqiao ; Zhang, Min ; Li, Shaowen ; Wang, Tianyu ; Zhou, Kefan ; Ma, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Commercialization</topic><topic>Diffusion rate</topic><topic>high‐rate performance</topic><topic>homogeneous presodiation strategy</topic><topic>initial coulombic efficiency</topic><topic>Kinetics</topic><topic>microstructural tailoring</topic><topic>Na diffusion kinetics</topic><topic>Nanotechnology</topic><topic>Prototyping</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Liuyan</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Wang, Helin</creatorcontrib><creatorcontrib>Bai, Miao</creatorcontrib><creatorcontrib>Tang, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Zhiqiao</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Li, Shaowen</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Zhou, Kefan</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Liuyan</au><au>Liu, Ting</au><au>Wang, Helin</au><au>Bai, Miao</au><au>Tang, Xiaoyu</au><au>Wang, Zhiqiao</au><au>Zhang, Min</au><au>Li, Shaowen</au><au>Wang, Tianyu</au><au>Zhou, Kefan</au><au>Ma, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>21</issue><spage>e2207638</spage><epage>n/a</epage><pages>e2207638-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na+ reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close‐to‐unit value. Detailed kinetics analysis observes that the Na+ diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (< 0.1 V vs. Na+/Na), which accelerates the rate‐limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm−2) with the NaVPO4F cathode (≈10.3 mg cm−2) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low‐temperature behavior till −40 °C as well as the maximized power output of 1500 W kg−1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na+ storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high‐rate SIB prototyping.
A multiscale modification strategy of hard carbon (HC) is proposed by exquisitely tuning the microstructure on the particle level as well as supplementing extra Na+ reservoir for the electrode through an insulation‐buffer‐layer assisted presodiation therapy. The coulombic efficiency of HC anode is precisely controlled till the close‐to‐unit value and Na+ diffusivity is drastically enhanced by two orders of magnitude at the low‐potential region.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36843222</pmid><doi>10.1002/smll.202207638</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1005-9386</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (21), p.e2207638-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2780481942 |
source | Wiley |
subjects | Anodes Commercialization Diffusion rate high‐rate performance homogeneous presodiation strategy initial coulombic efficiency Kinetics microstructural tailoring Na diffusion kinetics Nanotechnology Prototyping Sodium Sodium-ion batteries |
title | Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20the%20Reversible,%20High%E2%80%90Rate%20Na+%20Storage%20Capability%20of%20the%20Hard%20Carbon%20Anode%20Via%20the%20Synergistic%20Structural%20Tailoring%20and%20Controlled%20Presodiation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Hou,%20Liuyan&rft.date=2023-05-01&rft.volume=19&rft.issue=21&rft.spage=e2207638&rft.epage=n/a&rft.pages=e2207638-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202207638&rft_dat=%3Cproquest_cross%3E2780481942%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817947409&rft_id=info:pmid/36843222&rfr_iscdi=true |