Loading…

Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation

Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modificati...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-05, Vol.19 (21), p.e2207638-n/a
Main Authors: Hou, Liuyan, Liu, Ting, Wang, Helin, Bai, Miao, Tang, Xiaoyu, Wang, Zhiqiao, Zhang, Min, Li, Shaowen, Wang, Tianyu, Zhou, Kefan, Ma, Yue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3
cites cdi_FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3
container_end_page n/a
container_issue 21
container_start_page e2207638
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Hou, Liuyan
Liu, Ting
Wang, Helin
Bai, Miao
Tang, Xiaoyu
Wang, Zhiqiao
Zhang, Min
Li, Shaowen
Wang, Tianyu
Zhou, Kefan
Ma, Yue
description Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na+ reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close‐to‐unit value. Detailed kinetics analysis observes that the Na+ diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (< 0.1 V vs. Na+/Na), which accelerates the rate‐limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm−2) with the NaVPO4F cathode (≈10.3 mg cm−2) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low‐temperature behavior till −40 °C as well as the maximized power output of 1500 W kg−1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na+ storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high‐rate SIB prototyping. A multiscale modification strategy of hard carbon (HC) is proposed by exquisitely tuning the microstructure on the particle level as well as supplementing extra Na+ reservoir for the electrode through an insulation‐buffer‐layer assisted presodiation therapy. The coulombic efficiency of HC anode is precisely controlled till the close‐to‐unit value and Na+ diffusivity is drastically enhanced by two orders of magnitude at the low‐potential region.
doi_str_mv 10.1002/smll.202207638
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780481942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780481942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3</originalsourceid><addsrcrecordid>eNqFkctuEzEUhkcIRC-wZYkssUFqE3yZjD3LEkFTKVzUFLaWxz6TunLs1PaAsuMR2PJ6PEmdpgSJDSsf-Xz_f87RX1UvCB4TjOmbtHJuTDGlmDdMPKoOSUPYqBG0fbyvCT6ojlK6wZgRWvOn1QFrRM0opYfVr7chpGz9EuVrQJfwDWKynYNTNLPL698_fl6qDOijOkGLHKJaApqqteqss3mDQn-vmqloynfsgkdnPhhAX6267yw2HuLSlgG66OOg8xCVQ1fKuhC3Q5UvyuBzDM6BQZ8jpGCsyjb4Z9WTXrkEzx_e4-rL-3dX09lo_un8Yno2H2nGmRhxaHs6KfcoTDrStAYm_aTrse6MMaSmfQNGkE4bKoBToglTwEnPmtLjXGl2XL3e-a5juB0gZbmySYNzykMYkqRc4FqQtqYFffUPehOG6Mt2kgrC25rXuC3UeEfpGFKK0Mt1tCsVN5JguQ1NbkOT-9CK4OWD7dCtwOzxPykVoN0B362DzX_s5OLDfP7X_A4phqYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817947409</pqid></control><display><type>article</type><title>Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation</title><source>Wiley</source><creator>Hou, Liuyan ; Liu, Ting ; Wang, Helin ; Bai, Miao ; Tang, Xiaoyu ; Wang, Zhiqiao ; Zhang, Min ; Li, Shaowen ; Wang, Tianyu ; Zhou, Kefan ; Ma, Yue</creator><creatorcontrib>Hou, Liuyan ; Liu, Ting ; Wang, Helin ; Bai, Miao ; Tang, Xiaoyu ; Wang, Zhiqiao ; Zhang, Min ; Li, Shaowen ; Wang, Tianyu ; Zhou, Kefan ; Ma, Yue</creatorcontrib><description>Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na+ reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close‐to‐unit value. Detailed kinetics analysis observes that the Na+ diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (&lt; 0.1 V vs. Na+/Na), which accelerates the rate‐limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm−2) with the NaVPO4F cathode (≈10.3 mg cm−2) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low‐temperature behavior till −40 °C as well as the maximized power output of 1500 W kg−1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na+ storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high‐rate SIB prototyping. A multiscale modification strategy of hard carbon (HC) is proposed by exquisitely tuning the microstructure on the particle level as well as supplementing extra Na+ reservoir for the electrode through an insulation‐buffer‐layer assisted presodiation therapy. The coulombic efficiency of HC anode is precisely controlled till the close‐to‐unit value and Na+ diffusivity is drastically enhanced by two orders of magnitude at the low‐potential region.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202207638</identifier><identifier>PMID: 36843222</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Commercialization ; Diffusion rate ; high‐rate performance ; homogeneous presodiation strategy ; initial coulombic efficiency ; Kinetics ; microstructural tailoring ; Na diffusion kinetics ; Nanotechnology ; Prototyping ; Sodium ; Sodium-ion batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (21), p.e2207638-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3</citedby><cites>FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3</cites><orcidid>0000-0002-1005-9386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36843222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Liuyan</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Wang, Helin</creatorcontrib><creatorcontrib>Bai, Miao</creatorcontrib><creatorcontrib>Tang, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Zhiqiao</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Li, Shaowen</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Zhou, Kefan</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><title>Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na+ reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close‐to‐unit value. Detailed kinetics analysis observes that the Na+ diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (&lt; 0.1 V vs. Na+/Na), which accelerates the rate‐limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm−2) with the NaVPO4F cathode (≈10.3 mg cm−2) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low‐temperature behavior till −40 °C as well as the maximized power output of 1500 W kg−1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na+ storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high‐rate SIB prototyping. A multiscale modification strategy of hard carbon (HC) is proposed by exquisitely tuning the microstructure on the particle level as well as supplementing extra Na+ reservoir for the electrode through an insulation‐buffer‐layer assisted presodiation therapy. The coulombic efficiency of HC anode is precisely controlled till the close‐to‐unit value and Na+ diffusivity is drastically enhanced by two orders of magnitude at the low‐potential region.</description><subject>Anodes</subject><subject>Commercialization</subject><subject>Diffusion rate</subject><subject>high‐rate performance</subject><subject>homogeneous presodiation strategy</subject><subject>initial coulombic efficiency</subject><subject>Kinetics</subject><subject>microstructural tailoring</subject><subject>Na diffusion kinetics</subject><subject>Nanotechnology</subject><subject>Prototyping</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUhkcIRC-wZYkssUFqE3yZjD3LEkFTKVzUFLaWxz6TunLs1PaAsuMR2PJ6PEmdpgSJDSsf-Xz_f87RX1UvCB4TjOmbtHJuTDGlmDdMPKoOSUPYqBG0fbyvCT6ojlK6wZgRWvOn1QFrRM0opYfVr7chpGz9EuVrQJfwDWKynYNTNLPL698_fl6qDOijOkGLHKJaApqqteqss3mDQn-vmqloynfsgkdnPhhAX6267yw2HuLSlgG66OOg8xCVQ1fKuhC3Q5UvyuBzDM6BQZ8jpGCsyjb4Z9WTXrkEzx_e4-rL-3dX09lo_un8Yno2H2nGmRhxaHs6KfcoTDrStAYm_aTrse6MMaSmfQNGkE4bKoBToglTwEnPmtLjXGl2XL3e-a5juB0gZbmySYNzykMYkqRc4FqQtqYFffUPehOG6Mt2kgrC25rXuC3UeEfpGFKK0Mt1tCsVN5JguQ1NbkOT-9CK4OWD7dCtwOzxPykVoN0B362DzX_s5OLDfP7X_A4phqYk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Hou, Liuyan</creator><creator>Liu, Ting</creator><creator>Wang, Helin</creator><creator>Bai, Miao</creator><creator>Tang, Xiaoyu</creator><creator>Wang, Zhiqiao</creator><creator>Zhang, Min</creator><creator>Li, Shaowen</creator><creator>Wang, Tianyu</creator><creator>Zhou, Kefan</creator><creator>Ma, Yue</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1005-9386</orcidid></search><sort><creationdate>20230501</creationdate><title>Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation</title><author>Hou, Liuyan ; Liu, Ting ; Wang, Helin ; Bai, Miao ; Tang, Xiaoyu ; Wang, Zhiqiao ; Zhang, Min ; Li, Shaowen ; Wang, Tianyu ; Zhou, Kefan ; Ma, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Commercialization</topic><topic>Diffusion rate</topic><topic>high‐rate performance</topic><topic>homogeneous presodiation strategy</topic><topic>initial coulombic efficiency</topic><topic>Kinetics</topic><topic>microstructural tailoring</topic><topic>Na diffusion kinetics</topic><topic>Nanotechnology</topic><topic>Prototyping</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Liuyan</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Wang, Helin</creatorcontrib><creatorcontrib>Bai, Miao</creatorcontrib><creatorcontrib>Tang, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Zhiqiao</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Li, Shaowen</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Zhou, Kefan</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Liuyan</au><au>Liu, Ting</au><au>Wang, Helin</au><au>Bai, Miao</au><au>Tang, Xiaoyu</au><au>Wang, Zhiqiao</au><au>Zhang, Min</au><au>Li, Shaowen</au><au>Wang, Tianyu</au><au>Zhou, Kefan</au><au>Ma, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>21</issue><spage>e2207638</spage><epage>n/a</epage><pages>e2207638-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium‐ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high‐rate or low‐temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na+ reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close‐to‐unit value. Detailed kinetics analysis observes that the Na+ diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (&lt; 0.1 V vs. Na+/Na), which accelerates the rate‐limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm−2) with the NaVPO4F cathode (≈10.3 mg cm−2) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low‐temperature behavior till −40 °C as well as the maximized power output of 1500 W kg−1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na+ storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high‐rate SIB prototyping. A multiscale modification strategy of hard carbon (HC) is proposed by exquisitely tuning the microstructure on the particle level as well as supplementing extra Na+ reservoir for the electrode through an insulation‐buffer‐layer assisted presodiation therapy. The coulombic efficiency of HC anode is precisely controlled till the close‐to‐unit value and Na+ diffusivity is drastically enhanced by two orders of magnitude at the low‐potential region.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36843222</pmid><doi>10.1002/smll.202207638</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1005-9386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (21), p.e2207638-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2780481942
source Wiley
subjects Anodes
Commercialization
Diffusion rate
high‐rate performance
homogeneous presodiation strategy
initial coulombic efficiency
Kinetics
microstructural tailoring
Na diffusion kinetics
Nanotechnology
Prototyping
Sodium
Sodium-ion batteries
title Boosting the Reversible, High‐Rate Na+ Storage Capability of the Hard Carbon Anode Via the Synergistic Structural Tailoring and Controlled Presodiation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20the%20Reversible,%20High%E2%80%90Rate%20Na+%20Storage%20Capability%20of%20the%20Hard%20Carbon%20Anode%20Via%20the%20Synergistic%20Structural%20Tailoring%20and%20Controlled%20Presodiation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Hou,%20Liuyan&rft.date=2023-05-01&rft.volume=19&rft.issue=21&rft.spage=e2207638&rft.epage=n/a&rft.pages=e2207638-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202207638&rft_dat=%3Cproquest_cross%3E2780481942%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3738-7e9f25684a01b169de5f5bf0cbddd142f6ed81bcd28e721c13ae71f3614277ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817947409&rft_id=info:pmid/36843222&rfr_iscdi=true