Loading…

In Vivo Deep-Brain 3- and 4-Photon Fluorescence Imaging of Subcortical Structures Labeled by Quantum Dots Excited at the 2200 nm Window

Multiphoton microscopy (MPM) is an enabling technology for visualizing deep-brain structures at high spatial resolution . Within the low tissue absorption window, shifting to longer excitation wavelengths reduces tissue scattering and boosts penetration depth. Recently, the 2200 nm excitation window...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2023-02, Vol.17 (4), p.3686-3695
Main Authors: Tong, Shen, Zhong, Jincheng, Chen, Xinlin, Deng, Xiangquan, Huang, Jie, Zhang, Yingxian, Qin, Mengyuan, Li, Zhenhui, Cheng, Hui, Zhang, Wanjian, Zheng, Lei, Xie, Weixin, Qiu, Ping, Wang, Ke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-f5cd60c556716c319e86f93bae7b63c79d53643789862e58ee6f3d79b30a56bd3
cites cdi_FETCH-LOGICAL-c297t-f5cd60c556716c319e86f93bae7b63c79d53643789862e58ee6f3d79b30a56bd3
container_end_page 3695
container_issue 4
container_start_page 3686
container_title ACS nano
container_volume 17
creator Tong, Shen
Zhong, Jincheng
Chen, Xinlin
Deng, Xiangquan
Huang, Jie
Zhang, Yingxian
Qin, Mengyuan
Li, Zhenhui
Cheng, Hui
Zhang, Wanjian
Zheng, Lei
Xie, Weixin
Qiu, Ping
Wang, Ke
description Multiphoton microscopy (MPM) is an enabling technology for visualizing deep-brain structures at high spatial resolution . Within the low tissue absorption window, shifting to longer excitation wavelengths reduces tissue scattering and boosts penetration depth. Recently, the 2200 nm excitation window has emerged as the last and longest window suitable for deep-brain MPM. However, multiphoton fluorescence imaging at this window has not been demonstrated, due to the lack of characterization of multiphoton properties of fluorescent labels. Here we demonstrate technologies for measuring both the multiphoton excitation and emission properties of fluorescent labels at the 2200 nm window, using (1) 3-photon ( ) and 4-photon action cross sections ( ) and (2) 3-photon and 4-photon emission spectra both and of quantum dots. Our results show that quantum dots have exceptionally large and for efficient generation of multiphoton fluorescence. Besides, the 3-photon and 4-photon emission spectra of quantum dots are essentially identical to those of one-photon emission, which change negligibly subject to the local environment of circulating blood. Based on these characterization results, we further demonstrate deep-brain vasculature imaging . Due to the superb multiphoton properties of quantum dots, 3-photon and 4-photon fluorescence imaging reaches a maximum brain imaging depth of 1060 and 940 μm below the surface of a mouse brain, respectively, which enables the imaging of subcortical structures. We thus fill the last gap in multiphoton fluorescence imaging in terms of wavelength selection.
doi_str_mv 10.1021/acsnano.2c10724
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780765258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780765258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-f5cd60c556716c319e86f93bae7b63c79d53643789862e58ee6f3d79b30a56bd3</originalsourceid><addsrcrecordid>eNo9kDlv3DAQRgkjhq-4dhdMmUY2jyUplr6zwAJ24FydQFEjW4FErnn4-AX521HgjasZDN73AfMIOWL0mFHOTqxL3vpwzB2jmi-2yB4zQlW0Vr8-vO-S7ZL9lH5TKnWt1Q7ZFUobs-B6j_xZevgxPAW4QFxXZ9EOHkQF1newqG4fQg4ersYSIiaH3iEsJ3s_-HsIPdyV1oWYB2dHuMuxuFxmDFa2xRE7aF_ha7E-lwkuQk5w-eKGPN9thvyAwDml4Cf4OfguPH8k270dEx5u5gH5fnX57fxLtbq5Xp6frirHjc5VL12nqJNSaaacYAZr1RvRWtStEk6bTgq1ELo2teIoa0TVi06bVlArVduJA_L5rXcdw2PBlJtpmD8bR-sxlNRwXVOtJJf1jJ68oS6GlCL2zToOk42vDaPNP_vNxn6zsT8nPm3KSzth987_1y3-AtfdgVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780765258</pqid></control><display><type>article</type><title>In Vivo Deep-Brain 3- and 4-Photon Fluorescence Imaging of Subcortical Structures Labeled by Quantum Dots Excited at the 2200 nm Window</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tong, Shen ; Zhong, Jincheng ; Chen, Xinlin ; Deng, Xiangquan ; Huang, Jie ; Zhang, Yingxian ; Qin, Mengyuan ; Li, Zhenhui ; Cheng, Hui ; Zhang, Wanjian ; Zheng, Lei ; Xie, Weixin ; Qiu, Ping ; Wang, Ke</creator><creatorcontrib>Tong, Shen ; Zhong, Jincheng ; Chen, Xinlin ; Deng, Xiangquan ; Huang, Jie ; Zhang, Yingxian ; Qin, Mengyuan ; Li, Zhenhui ; Cheng, Hui ; Zhang, Wanjian ; Zheng, Lei ; Xie, Weixin ; Qiu, Ping ; Wang, Ke</creatorcontrib><description>Multiphoton microscopy (MPM) is an enabling technology for visualizing deep-brain structures at high spatial resolution . Within the low tissue absorption window, shifting to longer excitation wavelengths reduces tissue scattering and boosts penetration depth. Recently, the 2200 nm excitation window has emerged as the last and longest window suitable for deep-brain MPM. However, multiphoton fluorescence imaging at this window has not been demonstrated, due to the lack of characterization of multiphoton properties of fluorescent labels. Here we demonstrate technologies for measuring both the multiphoton excitation and emission properties of fluorescent labels at the 2200 nm window, using (1) 3-photon ( ) and 4-photon action cross sections ( ) and (2) 3-photon and 4-photon emission spectra both and of quantum dots. Our results show that quantum dots have exceptionally large and for efficient generation of multiphoton fluorescence. Besides, the 3-photon and 4-photon emission spectra of quantum dots are essentially identical to those of one-photon emission, which change negligibly subject to the local environment of circulating blood. Based on these characterization results, we further demonstrate deep-brain vasculature imaging . Due to the superb multiphoton properties of quantum dots, 3-photon and 4-photon fluorescence imaging reaches a maximum brain imaging depth of 1060 and 940 μm below the surface of a mouse brain, respectively, which enables the imaging of subcortical structures. We thus fill the last gap in multiphoton fluorescence imaging in terms of wavelength selection.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c10724</identifier><identifier>PMID: 36799427</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Brain - blood supply ; Brain - diagnostic imaging ; Fluorescent Dyes - chemistry ; Mice ; Microscopy, Fluorescence, Multiphoton - methods ; Optical Imaging ; Quantum Dots - chemistry</subject><ispartof>ACS nano, 2023-02, Vol.17 (4), p.3686-3695</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-f5cd60c556716c319e86f93bae7b63c79d53643789862e58ee6f3d79b30a56bd3</citedby><cites>FETCH-LOGICAL-c297t-f5cd60c556716c319e86f93bae7b63c79d53643789862e58ee6f3d79b30a56bd3</cites><orcidid>0000-0002-2114-5909 ; 0000-0002-9445-2168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36799427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Shen</creatorcontrib><creatorcontrib>Zhong, Jincheng</creatorcontrib><creatorcontrib>Chen, Xinlin</creatorcontrib><creatorcontrib>Deng, Xiangquan</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Zhang, Yingxian</creatorcontrib><creatorcontrib>Qin, Mengyuan</creatorcontrib><creatorcontrib>Li, Zhenhui</creatorcontrib><creatorcontrib>Cheng, Hui</creatorcontrib><creatorcontrib>Zhang, Wanjian</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Xie, Weixin</creatorcontrib><creatorcontrib>Qiu, Ping</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><title>In Vivo Deep-Brain 3- and 4-Photon Fluorescence Imaging of Subcortical Structures Labeled by Quantum Dots Excited at the 2200 nm Window</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Multiphoton microscopy (MPM) is an enabling technology for visualizing deep-brain structures at high spatial resolution . Within the low tissue absorption window, shifting to longer excitation wavelengths reduces tissue scattering and boosts penetration depth. Recently, the 2200 nm excitation window has emerged as the last and longest window suitable for deep-brain MPM. However, multiphoton fluorescence imaging at this window has not been demonstrated, due to the lack of characterization of multiphoton properties of fluorescent labels. Here we demonstrate technologies for measuring both the multiphoton excitation and emission properties of fluorescent labels at the 2200 nm window, using (1) 3-photon ( ) and 4-photon action cross sections ( ) and (2) 3-photon and 4-photon emission spectra both and of quantum dots. Our results show that quantum dots have exceptionally large and for efficient generation of multiphoton fluorescence. Besides, the 3-photon and 4-photon emission spectra of quantum dots are essentially identical to those of one-photon emission, which change negligibly subject to the local environment of circulating blood. Based on these characterization results, we further demonstrate deep-brain vasculature imaging . Due to the superb multiphoton properties of quantum dots, 3-photon and 4-photon fluorescence imaging reaches a maximum brain imaging depth of 1060 and 940 μm below the surface of a mouse brain, respectively, which enables the imaging of subcortical structures. We thus fill the last gap in multiphoton fluorescence imaging in terms of wavelength selection.</description><subject>Animals</subject><subject>Brain - blood supply</subject><subject>Brain - diagnostic imaging</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Mice</subject><subject>Microscopy, Fluorescence, Multiphoton - methods</subject><subject>Optical Imaging</subject><subject>Quantum Dots - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kDlv3DAQRgkjhq-4dhdMmUY2jyUplr6zwAJ24FydQFEjW4FErnn4-AX521HgjasZDN73AfMIOWL0mFHOTqxL3vpwzB2jmi-2yB4zQlW0Vr8-vO-S7ZL9lH5TKnWt1Q7ZFUobs-B6j_xZevgxPAW4QFxXZ9EOHkQF1newqG4fQg4ersYSIiaH3iEsJ3s_-HsIPdyV1oWYB2dHuMuxuFxmDFa2xRE7aF_ha7E-lwkuQk5w-eKGPN9thvyAwDml4Cf4OfguPH8k270dEx5u5gH5fnX57fxLtbq5Xp6frirHjc5VL12nqJNSaaacYAZr1RvRWtStEk6bTgq1ELo2teIoa0TVi06bVlArVduJA_L5rXcdw2PBlJtpmD8bR-sxlNRwXVOtJJf1jJ68oS6GlCL2zToOk42vDaPNP_vNxn6zsT8nPm3KSzth987_1y3-AtfdgVA</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Tong, Shen</creator><creator>Zhong, Jincheng</creator><creator>Chen, Xinlin</creator><creator>Deng, Xiangquan</creator><creator>Huang, Jie</creator><creator>Zhang, Yingxian</creator><creator>Qin, Mengyuan</creator><creator>Li, Zhenhui</creator><creator>Cheng, Hui</creator><creator>Zhang, Wanjian</creator><creator>Zheng, Lei</creator><creator>Xie, Weixin</creator><creator>Qiu, Ping</creator><creator>Wang, Ke</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2114-5909</orcidid><orcidid>https://orcid.org/0000-0002-9445-2168</orcidid></search><sort><creationdate>20230228</creationdate><title>In Vivo Deep-Brain 3- and 4-Photon Fluorescence Imaging of Subcortical Structures Labeled by Quantum Dots Excited at the 2200 nm Window</title><author>Tong, Shen ; Zhong, Jincheng ; Chen, Xinlin ; Deng, Xiangquan ; Huang, Jie ; Zhang, Yingxian ; Qin, Mengyuan ; Li, Zhenhui ; Cheng, Hui ; Zhang, Wanjian ; Zheng, Lei ; Xie, Weixin ; Qiu, Ping ; Wang, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-f5cd60c556716c319e86f93bae7b63c79d53643789862e58ee6f3d79b30a56bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Brain - blood supply</topic><topic>Brain - diagnostic imaging</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Mice</topic><topic>Microscopy, Fluorescence, Multiphoton - methods</topic><topic>Optical Imaging</topic><topic>Quantum Dots - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Shen</creatorcontrib><creatorcontrib>Zhong, Jincheng</creatorcontrib><creatorcontrib>Chen, Xinlin</creatorcontrib><creatorcontrib>Deng, Xiangquan</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Zhang, Yingxian</creatorcontrib><creatorcontrib>Qin, Mengyuan</creatorcontrib><creatorcontrib>Li, Zhenhui</creatorcontrib><creatorcontrib>Cheng, Hui</creatorcontrib><creatorcontrib>Zhang, Wanjian</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Xie, Weixin</creatorcontrib><creatorcontrib>Qiu, Ping</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Shen</au><au>Zhong, Jincheng</au><au>Chen, Xinlin</au><au>Deng, Xiangquan</au><au>Huang, Jie</au><au>Zhang, Yingxian</au><au>Qin, Mengyuan</au><au>Li, Zhenhui</au><au>Cheng, Hui</au><au>Zhang, Wanjian</au><au>Zheng, Lei</au><au>Xie, Weixin</au><au>Qiu, Ping</au><au>Wang, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Deep-Brain 3- and 4-Photon Fluorescence Imaging of Subcortical Structures Labeled by Quantum Dots Excited at the 2200 nm Window</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-02-28</date><risdate>2023</risdate><volume>17</volume><issue>4</issue><spage>3686</spage><epage>3695</epage><pages>3686-3695</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Multiphoton microscopy (MPM) is an enabling technology for visualizing deep-brain structures at high spatial resolution . Within the low tissue absorption window, shifting to longer excitation wavelengths reduces tissue scattering and boosts penetration depth. Recently, the 2200 nm excitation window has emerged as the last and longest window suitable for deep-brain MPM. However, multiphoton fluorescence imaging at this window has not been demonstrated, due to the lack of characterization of multiphoton properties of fluorescent labels. Here we demonstrate technologies for measuring both the multiphoton excitation and emission properties of fluorescent labels at the 2200 nm window, using (1) 3-photon ( ) and 4-photon action cross sections ( ) and (2) 3-photon and 4-photon emission spectra both and of quantum dots. Our results show that quantum dots have exceptionally large and for efficient generation of multiphoton fluorescence. Besides, the 3-photon and 4-photon emission spectra of quantum dots are essentially identical to those of one-photon emission, which change negligibly subject to the local environment of circulating blood. Based on these characterization results, we further demonstrate deep-brain vasculature imaging . Due to the superb multiphoton properties of quantum dots, 3-photon and 4-photon fluorescence imaging reaches a maximum brain imaging depth of 1060 and 940 μm below the surface of a mouse brain, respectively, which enables the imaging of subcortical structures. We thus fill the last gap in multiphoton fluorescence imaging in terms of wavelength selection.</abstract><cop>United States</cop><pmid>36799427</pmid><doi>10.1021/acsnano.2c10724</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2114-5909</orcidid><orcidid>https://orcid.org/0000-0002-9445-2168</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-02, Vol.17 (4), p.3686-3695
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2780765258
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Brain - blood supply
Brain - diagnostic imaging
Fluorescent Dyes - chemistry
Mice
Microscopy, Fluorescence, Multiphoton - methods
Optical Imaging
Quantum Dots - chemistry
title In Vivo Deep-Brain 3- and 4-Photon Fluorescence Imaging of Subcortical Structures Labeled by Quantum Dots Excited at the 2200 nm Window
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Deep-Brain%203-%20and%204-Photon%20Fluorescence%20Imaging%20of%20Subcortical%20Structures%20Labeled%20by%20Quantum%20Dots%20Excited%20at%20the%202200%20nm%20Window&rft.jtitle=ACS%20nano&rft.au=Tong,%20Shen&rft.date=2023-02-28&rft.volume=17&rft.issue=4&rft.spage=3686&rft.epage=3695&rft.pages=3686-3695&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c10724&rft_dat=%3Cproquest_cross%3E2780765258%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-f5cd60c556716c319e86f93bae7b63c79d53643789862e58ee6f3d79b30a56bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780765258&rft_id=info:pmid/36799427&rfr_iscdi=true