Loading…

Fabrication of Ni-Encapsulated Carbon Tube/Poly(dimethylsiloxane) Composite Materials for Lightweight and Flexible Electromagnetic Interference Shielding Material

The exploration of flexible and lightweight electromagnetic interference (EMI) shielding materials with excellent shielding effectiveness, as a means to effectively alleviate electromagnetic pollution, is still a tremendous challenge. This paper proposes a conducting material named the textured Ni-e...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2023-03, Vol.39 (10), p.3558-3568
Main Authors: Zhao, Xingke, Wan, Jiajia, Sun, Di, Li, Ge, Ma, Haodong, Li, Honglin, Chen, Zhenming, Liu, Xing, Huang, Junjun, Gui, Chengmei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The exploration of flexible and lightweight electromagnetic interference (EMI) shielding materials with excellent shielding effectiveness, as a means to effectively alleviate electromagnetic pollution, is still a tremendous challenge. This paper proposes a conducting material named the textured Ni-encapsulated carbon tube, which can be applied in EMI shielding material by being inserted in the center of a poly­(dimethysiloxane) (PDMS) polymer. We demonstrated that Pd2+ could be absorbed by the active groups on the plant fiber surface to catalyze the reduction of Ni2+ as a catalytic center by means of a textured Ni-encapsulated plant fiber. Owing to the outstanding heat-conducting capability of the Ni coating, the inner plant fiber was carbonized and attached to the Ni-tube inside the surface during annealing. To be precise, the textured Ni-encapsulated C tube was fabricated successfully after annealing at 300 °C. On further increasing the annealing temperature, the C tube disappeared gradually with the Ni coating being oxidized to NiO. Of note, the C tube acted as a support layer for the external Ni coating, providing sufficient mechanical strength. When combined with the coating PDMS layer, a flexible and lightweight EMI shielding material is fabricated successfully. It displays an outstanding EMI shielding effectiveness of 31.34 dB and a higher specific shielding efficiency of 27.5 dB·cm3/g, especially showing excellent mechanical property and flexibility with only 2 mm thickness. This study provides a new method to fabricate outstanding EMI shielding materials.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.2c02830