Loading…
Development of a cryogenic passive-scattering-type near-field optical microscopy system
Passive scattering-type, scanning near-field optical microscopy (s-SNOM) has been employed to study localized, long-wavelength infrared (LWIR) surface waves without external illumination. Here, we develop a cryogenic passive s-SNOM instrument in a vacuum chamber with 4 K liquid-helium cooling. Notab...
Saved in:
Published in: | Review of scientific instruments 2023-02, Vol.94 (2), p.023701-023701 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Passive scattering-type, scanning near-field optical microscopy (s-SNOM) has been employed to study localized, long-wavelength infrared (LWIR) surface waves without external illumination. Here, we develop a cryogenic passive s-SNOM instrument in a vacuum chamber with 4 K liquid-helium cooling. Notably, the extremely low-temperature environment inside the chamber enables the realization of passive near-field detection with low background thermal noise. The technique mainly utilizes a highly sensitive LWIR confocal optical system and a tuning fork-based atomic force microscope, and the near-field detection was performed at a wavelength of 10.2 ± 0.9 µm. In this paper, we discuss the cryogenic s-SNOM implementation in detail and report the investigation of thermally excited surface electromagnetic fields on a self-heated NiCr wire deposited on SiO2 at a temperature of 5 K. The origin of the surface electromagnetic fields was established to be the thermally excited fluctuating charges of the conduction electrons. The cryogenic s-SNOM method presented herein shows significant promise for application in a variety of spheres, including hot-carrier dissipation in ballistic conductors. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0133575 |