Loading…

A certified reference material for the scratch test

Adhesion and other mechanical behaviour of coatings is at present routinely tested in industry and research organisations using the scratch test. The test has been the subject of a European Standard prEN 1071-3:2000 established by the European Standards Committee CEN TC184 WG5. A previous European p...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2003-09, Vol.174, p.1008-1013
Main Authors: Jacobs, R., Meneve, J., Dyson, G., Teer, D.G., Jennett, N.M., Harris, P., von Stebut, J., Comte, C., Feuchter, P., Cavaleiro, A., Ronkainen, H., Holmberg, K., Beck, U., Reiners, G., Ingelbrecht, C.D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adhesion and other mechanical behaviour of coatings is at present routinely tested in industry and research organisations using the scratch test. The test has been the subject of a European Standard prEN 1071-3:2000 established by the European Standards Committee CEN TC184 WG5. A previous European project on the development and validation of test methods for thin hard coatings—FASTE—revealed that uncertainties in the Rockwell C stylus tip shape represent a major source of error for the scratch-test method. Therefore a follow-up project—REMAST—was started to develop and certify a reference material as a quality control tool for the testing and qualification of scratch-test instruments. In addition, a considerable effort was devoted to improve the scratch stylus manufacturing process. This paper presents the results of the REMAST project. During a feasibility study, two candidate materials—titanium nitride (TiN) and diamond-like carbon (DLC) coatings both on high speed steel substrates—were evaluated. Because of the lower sensitivity to styli tip shape variations and higher data scatter observed for the TiN coating, DLC was chosen as the reference material to be certified. One thousand samples were produced, as well as qualified styli to carry out the certification campaign, including homogeneity and stability testing. Nine independent laboratories were involved in the certification exercise, and the data were statistically analysed to obtain the certified critical load values and their uncertainty ranges. A certified reference material BCR-692 is available for verification purposes. This presents three repeatable failure events at certified critical load intervals and can provide a good indication of overall scratch-test instrument performance, including stylus condition and calibration. It is also useful as a diagnostic tool, providing a means of sensitive monitoring of machine and stylus performance over extended periods. Considerable improvement of the quality of scratch styli was achieved by the strict control of all manufacturing steps.
ISSN:0257-8972
1879-3347
DOI:10.1016/S0257-8972(03)00470-5