Loading…
Acrylonitrile-butadiene-styrene toughened nylon 6: The influences of compatibilizer on morphology and impact properties
Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interfacial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engine...
Saved in:
Published in: | Journal of applied polymer science 2003-01, Vol.87 (5), p.842-847 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interfacial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engineering applications, but it has processing instability and relatively low notched impact strength. In this study, the acrylonitrile–butadiene–styrene (ABS) triblock copolymer was used as an impact modifier for PA6. Poly(methyl methacrylate‐co‐maleic anyhydride) (MMA‐MA) and poly(methyl methacrylate‐co‐glycidyl methacrylate) (MMA‐GMA) were used as compatibilizers for this blend. The morphology and impact strength of the blends were evaluated as a function of blend composition and the presence of compatibilizers. The blends compatibilized with maleated copolymer exhibited an impact strength up to 800 J/m and a morphology with ABS domains more efi8ciently dispersed. Moderate amounts of MA functionality in the compatibilizer (∼5%) and small amounts of compatibilizer in the blend (∼5%) appear sufficient to improve the impact properties and ABS dispersion. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 842–847, 2003 |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.11502 |