Loading…
Quantum Instruction Set Design for Performance
A quantum instruction set is where quantum hardware and software meet. We develop characterization and compilation techniques for non-Clifford gates to accurately evaluate its designs. Applying these techniques to our fluxonium processor, we show that replacing the iSWAP gate by its square root SQiS...
Saved in:
Published in: | Physical review letters 2023-02, Vol.130 (7), p.070601-070601, Article 070601 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-f2b30bd0ac48ccbc91404532c09619f964484e81693df5e6cedb65efa5bdd0a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-f2b30bd0ac48ccbc91404532c09619f964484e81693df5e6cedb65efa5bdd0a13 |
container_end_page | 070601 |
container_issue | 7 |
container_start_page | 070601 |
container_title | Physical review letters |
container_volume | 130 |
creator | Huang, Cupjin Wang, Tenghui Wu, Feng Ding, Dawei Ye, Qi Kong, Linghang Zhang, Fang Ni, Xiaotong Song, Zhijun Shi, Yaoyun Zhao, Hui-Hai Deng, Chunqing Chen, Jianxin |
description | A quantum instruction set is where quantum hardware and software meet. We develop characterization and compilation techniques for non-Clifford gates to accurately evaluate its designs. Applying these techniques to our fluxonium processor, we show that replacing the iSWAP gate by its square root SQiSW leads to a significant performance boost at almost no cost. More precisely, on SQiSW we measure a gate fidelity of up to 99.72% and averaging at 99.31%, and realize Haar random two-qubit gates with an average fidelity of 96.38%. This is an average error reduction of 41% for the former and a 50% reduction for the latter compared to using iSWAP on the same processor. |
doi_str_mv | 10.1103/PhysRevLett.130.070601 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2783494068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783494068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f2b30bd0ac48ccbc91404532c09619f964484e81693df5e6cedb65efa5bdd0a13</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0EoqXwC1WWbBLujR3HXiKelSpRXmsrcW4gqEmK7SD17wlqQaxmM2dGOozNERJE4Ber961_oq8lhZAghwRykIAHbIqQ6zhHFIdsCsAx1gD5hJ14_wEAmEp1zCZcKpkrUFOWPA5FF4Y2WnQ-uMGGpu-iZwrRNfnmrYvq3kUrcmO0RWfplB3VxdrT2T5n7PX25uXqPl4-3C2uLpex5ZkOcZ2WHMoKCiuUtaXVKEBkPLWgJepaSyGUIIVS86rOSFqqSplRXWRlNVLIZ-x8t7tx_edAPpi28ZbW66KjfvAmzRUXWoBUY1Xuqtb13juqzcY1beG2BsH8uDL_XJnRldm5GsH5_mMoW6r-sF85_BtTGWfX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783494068</pqid></control><display><type>article</type><title>Quantum Instruction Set Design for Performance</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Huang, Cupjin ; Wang, Tenghui ; Wu, Feng ; Ding, Dawei ; Ye, Qi ; Kong, Linghang ; Zhang, Fang ; Ni, Xiaotong ; Song, Zhijun ; Shi, Yaoyun ; Zhao, Hui-Hai ; Deng, Chunqing ; Chen, Jianxin</creator><creatorcontrib>Huang, Cupjin ; Wang, Tenghui ; Wu, Feng ; Ding, Dawei ; Ye, Qi ; Kong, Linghang ; Zhang, Fang ; Ni, Xiaotong ; Song, Zhijun ; Shi, Yaoyun ; Zhao, Hui-Hai ; Deng, Chunqing ; Chen, Jianxin</creatorcontrib><description>A quantum instruction set is where quantum hardware and software meet. We develop characterization and compilation techniques for non-Clifford gates to accurately evaluate its designs. Applying these techniques to our fluxonium processor, we show that replacing the iSWAP gate by its square root SQiSW leads to a significant performance boost at almost no cost. More precisely, on SQiSW we measure a gate fidelity of up to 99.72% and averaging at 99.31%, and realize Haar random two-qubit gates with an average fidelity of 96.38%. This is an average error reduction of 41% for the former and a 50% reduction for the latter compared to using iSWAP on the same processor.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.130.070601</identifier><identifier>PMID: 36867808</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2023-02, Vol.130 (7), p.070601-070601, Article 070601</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f2b30bd0ac48ccbc91404532c09619f964484e81693df5e6cedb65efa5bdd0a13</citedby><cites>FETCH-LOGICAL-c359t-f2b30bd0ac48ccbc91404532c09619f964484e81693df5e6cedb65efa5bdd0a13</cites><orcidid>0000-0003-1806-9391 ; 0000-0003-1652-9243 ; 0000-0001-7075-8325 ; 0000-0002-7466-8033 ; 0000-0002-9365-776X ; 0000-0001-7728-5380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36867808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Cupjin</creatorcontrib><creatorcontrib>Wang, Tenghui</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Ding, Dawei</creatorcontrib><creatorcontrib>Ye, Qi</creatorcontrib><creatorcontrib>Kong, Linghang</creatorcontrib><creatorcontrib>Zhang, Fang</creatorcontrib><creatorcontrib>Ni, Xiaotong</creatorcontrib><creatorcontrib>Song, Zhijun</creatorcontrib><creatorcontrib>Shi, Yaoyun</creatorcontrib><creatorcontrib>Zhao, Hui-Hai</creatorcontrib><creatorcontrib>Deng, Chunqing</creatorcontrib><creatorcontrib>Chen, Jianxin</creatorcontrib><title>Quantum Instruction Set Design for Performance</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A quantum instruction set is where quantum hardware and software meet. We develop characterization and compilation techniques for non-Clifford gates to accurately evaluate its designs. Applying these techniques to our fluxonium processor, we show that replacing the iSWAP gate by its square root SQiSW leads to a significant performance boost at almost no cost. More precisely, on SQiSW we measure a gate fidelity of up to 99.72% and averaging at 99.31%, and realize Haar random two-qubit gates with an average fidelity of 96.38%. This is an average error reduction of 41% for the former and a 50% reduction for the latter compared to using iSWAP on the same processor.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAURC0EoqXwC1WWbBLujR3HXiKelSpRXmsrcW4gqEmK7SD17wlqQaxmM2dGOozNERJE4Ber961_oq8lhZAghwRykIAHbIqQ6zhHFIdsCsAx1gD5hJ14_wEAmEp1zCZcKpkrUFOWPA5FF4Y2WnQ-uMGGpu-iZwrRNfnmrYvq3kUrcmO0RWfplB3VxdrT2T5n7PX25uXqPl4-3C2uLpex5ZkOcZ2WHMoKCiuUtaXVKEBkPLWgJepaSyGUIIVS86rOSFqqSplRXWRlNVLIZ-x8t7tx_edAPpi28ZbW66KjfvAmzRUXWoBUY1Xuqtb13juqzcY1beG2BsH8uDL_XJnRldm5GsH5_mMoW6r-sF85_BtTGWfX</recordid><startdate>20230217</startdate><enddate>20230217</enddate><creator>Huang, Cupjin</creator><creator>Wang, Tenghui</creator><creator>Wu, Feng</creator><creator>Ding, Dawei</creator><creator>Ye, Qi</creator><creator>Kong, Linghang</creator><creator>Zhang, Fang</creator><creator>Ni, Xiaotong</creator><creator>Song, Zhijun</creator><creator>Shi, Yaoyun</creator><creator>Zhao, Hui-Hai</creator><creator>Deng, Chunqing</creator><creator>Chen, Jianxin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1806-9391</orcidid><orcidid>https://orcid.org/0000-0003-1652-9243</orcidid><orcidid>https://orcid.org/0000-0001-7075-8325</orcidid><orcidid>https://orcid.org/0000-0002-7466-8033</orcidid><orcidid>https://orcid.org/0000-0002-9365-776X</orcidid><orcidid>https://orcid.org/0000-0001-7728-5380</orcidid></search><sort><creationdate>20230217</creationdate><title>Quantum Instruction Set Design for Performance</title><author>Huang, Cupjin ; Wang, Tenghui ; Wu, Feng ; Ding, Dawei ; Ye, Qi ; Kong, Linghang ; Zhang, Fang ; Ni, Xiaotong ; Song, Zhijun ; Shi, Yaoyun ; Zhao, Hui-Hai ; Deng, Chunqing ; Chen, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f2b30bd0ac48ccbc91404532c09619f964484e81693df5e6cedb65efa5bdd0a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cupjin</creatorcontrib><creatorcontrib>Wang, Tenghui</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Ding, Dawei</creatorcontrib><creatorcontrib>Ye, Qi</creatorcontrib><creatorcontrib>Kong, Linghang</creatorcontrib><creatorcontrib>Zhang, Fang</creatorcontrib><creatorcontrib>Ni, Xiaotong</creatorcontrib><creatorcontrib>Song, Zhijun</creatorcontrib><creatorcontrib>Shi, Yaoyun</creatorcontrib><creatorcontrib>Zhao, Hui-Hai</creatorcontrib><creatorcontrib>Deng, Chunqing</creatorcontrib><creatorcontrib>Chen, Jianxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cupjin</au><au>Wang, Tenghui</au><au>Wu, Feng</au><au>Ding, Dawei</au><au>Ye, Qi</au><au>Kong, Linghang</au><au>Zhang, Fang</au><au>Ni, Xiaotong</au><au>Song, Zhijun</au><au>Shi, Yaoyun</au><au>Zhao, Hui-Hai</au><au>Deng, Chunqing</au><au>Chen, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Instruction Set Design for Performance</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2023-02-17</date><risdate>2023</risdate><volume>130</volume><issue>7</issue><spage>070601</spage><epage>070601</epage><pages>070601-070601</pages><artnum>070601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>A quantum instruction set is where quantum hardware and software meet. We develop characterization and compilation techniques for non-Clifford gates to accurately evaluate its designs. Applying these techniques to our fluxonium processor, we show that replacing the iSWAP gate by its square root SQiSW leads to a significant performance boost at almost no cost. More precisely, on SQiSW we measure a gate fidelity of up to 99.72% and averaging at 99.31%, and realize Haar random two-qubit gates with an average fidelity of 96.38%. This is an average error reduction of 41% for the former and a 50% reduction for the latter compared to using iSWAP on the same processor.</abstract><cop>United States</cop><pmid>36867808</pmid><doi>10.1103/PhysRevLett.130.070601</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1806-9391</orcidid><orcidid>https://orcid.org/0000-0003-1652-9243</orcidid><orcidid>https://orcid.org/0000-0001-7075-8325</orcidid><orcidid>https://orcid.org/0000-0002-7466-8033</orcidid><orcidid>https://orcid.org/0000-0002-9365-776X</orcidid><orcidid>https://orcid.org/0000-0001-7728-5380</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2023-02, Vol.130 (7), p.070601-070601, Article 070601 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2783494068 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Quantum Instruction Set Design for Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Instruction%20Set%20Design%20for%20Performance&rft.jtitle=Physical%20review%20letters&rft.au=Huang,%20Cupjin&rft.date=2023-02-17&rft.volume=130&rft.issue=7&rft.spage=070601&rft.epage=070601&rft.pages=070601-070601&rft.artnum=070601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.130.070601&rft_dat=%3Cproquest_cross%3E2783494068%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f2b30bd0ac48ccbc91404532c09619f964484e81693df5e6cedb65efa5bdd0a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2783494068&rft_id=info:pmid/36867808&rfr_iscdi=true |