Loading…
Citizen Science Improves the Known and Potential Distribution of a Strong Wetland Invader: Implications for Niche Modeling and Invasion Management
Invasive alien species are one of the main causes of biodiversity loss and ecosystem alteration. Obtaining up-to-date occurrence records and accurate invasion risk maps has become crucial to develop timely and effective management strategies. Unfortunately, gathering and validating distribution data...
Saved in:
Published in: | Environmental management (New York) 2023-06, Vol.71 (6), p.1176-1187 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Invasive alien species are one of the main causes of biodiversity loss and ecosystem alteration. Obtaining up-to-date occurrence records and accurate invasion risk maps has become crucial to develop timely and effective management strategies. Unfortunately, gathering and validating distribution data can be labor-intensive and time-consuming, with different data sources unavoidably leading to biases in the results. In this study, we evaluated the performance of a tailored citizen science project compared with other data sources, in mapping the current and potential distribution of
Iris pseudacorus
, a strong invasive alien plant in Argentina. To do so, we used geographic information systems and ecological niche modeling with Maxent, and compared data from: i) a citizen science tailored project; ii) the Global Biodiversity Information Facility (GBIF); and iii) an exhaustive professional data collection (i.e. field samplings across Argentina, literature and collections review). Results suggest that the citizen science tailored project provided a larger and more diversified amount of data compared to the other sources. All data-sources showed good performance in the ecological niche models, however, data from the tailored citizen science project predicted a greater suitable area, including regions not yet reported. This allowed us to better identify critical and vulnerable areas, where management and prevention strategies are necessary. Professional data provided more reports in non-urban areas, whereas citizen science based data sources (i.e. GBIF and the citizen science project conducted in this study) reported more sites in urban areas, which indicates that different data-sources are complementary and there is a big potential in combining methods. We encourage the use of tailored citizen science campaigns to gather a more diverse amount of data, generating better knowledge about aquatic invasive species and helping decision-making in ecosystem management. |
---|---|
ISSN: | 0364-152X 1432-1009 |
DOI: | 10.1007/s00267-023-01802-3 |