Loading…
A dirichlet problem for the biharmonic equation in a semi-infinite strip
This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation...
Saved in:
Published in: | Journal of engineering mathematics 2003-08, Vol.46 (3-4), p.253-268 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093 |
---|---|
cites | |
container_end_page | 268 |
container_issue | 3-4 |
container_start_page | 253 |
container_title | Journal of engineering mathematics |
container_volume | 46 |
creator | Gomilko, A M |
description | This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation and to provide a rigorous justification of the applicability of the method of superposition. Mellin's transform technique of investigating the asymptotic behaviour of unknown density when the argument tends to infinity is used. |
doi_str_mv | 10.1023/A:1025065714786 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27837774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27837774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093</originalsourceid><addsrcrecordid>eNotjjtPwzAYAD2ARCnMrJ7YAl_8jNmiCihSJRaYKz8-K0aJ08bO_6cSTDecdDpCHlp4aoHx5_7lAglK6lboTl2RDQBjDXSc35DbUn4AwHSCbci-pyEtyQ8jVnpaZjfiROO80DogdWmwyzTn5CmeV1vTnGnK1NKCU2pSjimnirTUJZ3uyHW0Y8H7f27J99vr127fHD7fP3b9ofGMQ20MCpBMtkK6DjvmjAQRI8qovQPwCrSxRungQwxK-Yvj0VljYrBcBjB8Sx7_upfZ84qlHqdUPI6jzTiv5ch0x7XWgv8CT5hOIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27837774</pqid></control><display><type>article</type><title>A dirichlet problem for the biharmonic equation in a semi-infinite strip</title><source>Springer Nature</source><creator>Gomilko, A M</creator><creatorcontrib>Gomilko, A M</creatorcontrib><description>This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation and to provide a rigorous justification of the applicability of the method of superposition. Mellin's transform technique of investigating the asymptotic behaviour of unknown density when the argument tends to infinity is used.</description><identifier>ISSN: 0022-0833</identifier><identifier>DOI: 10.1023/A:1025065714786</identifier><language>eng</language><ispartof>Journal of engineering mathematics, 2003-08, Vol.46 (3-4), p.253-268</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gomilko, A M</creatorcontrib><title>A dirichlet problem for the biharmonic equation in a semi-infinite strip</title><title>Journal of engineering mathematics</title><description>This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation and to provide a rigorous justification of the applicability of the method of superposition. Mellin's transform technique of investigating the asymptotic behaviour of unknown density when the argument tends to infinity is used.</description><issn>0022-0833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotjjtPwzAYAD2ARCnMrJ7YAl_8jNmiCihSJRaYKz8-K0aJ08bO_6cSTDecdDpCHlp4aoHx5_7lAglK6lboTl2RDQBjDXSc35DbUn4AwHSCbci-pyEtyQ8jVnpaZjfiROO80DogdWmwyzTn5CmeV1vTnGnK1NKCU2pSjimnirTUJZ3uyHW0Y8H7f27J99vr127fHD7fP3b9ofGMQ20MCpBMtkK6DjvmjAQRI8qovQPwCrSxRungQwxK-Yvj0VljYrBcBjB8Sx7_upfZ84qlHqdUPI6jzTiv5ch0x7XWgv8CT5hOIA</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Gomilko, A M</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030801</creationdate><title>A dirichlet problem for the biharmonic equation in a semi-infinite strip</title><author>Gomilko, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomilko, A M</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomilko, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dirichlet problem for the biharmonic equation in a semi-infinite strip</atitle><jtitle>Journal of engineering mathematics</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>46</volume><issue>3-4</issue><spage>253</spage><epage>268</epage><pages>253-268</pages><issn>0022-0833</issn><abstract>This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation and to provide a rigorous justification of the applicability of the method of superposition. Mellin's transform technique of investigating the asymptotic behaviour of unknown density when the argument tends to infinity is used.</abstract><doi>10.1023/A:1025065714786</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0833 |
ispartof | Journal of engineering mathematics, 2003-08, Vol.46 (3-4), p.253-268 |
issn | 0022-0833 |
language | eng |
recordid | cdi_proquest_miscellaneous_27837774 |
source | Springer Nature |
title | A dirichlet problem for the biharmonic equation in a semi-infinite strip |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dirichlet%20problem%20for%20the%20biharmonic%20equation%20in%20a%20semi-infinite%20strip&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Gomilko,%20A%20M&rft.date=2003-08-01&rft.volume=46&rft.issue=3-4&rft.spage=253&rft.epage=268&rft.pages=253-268&rft.issn=0022-0833&rft_id=info:doi/10.1023/A:1025065714786&rft_dat=%3Cproquest%3E27837774%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27837774&rft_id=info:pmid/&rfr_iscdi=true |