Loading…

A dirichlet problem for the biharmonic equation in a semi-infinite strip

This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering mathematics 2003-08, Vol.46 (3-4), p.253-268
Main Author: Gomilko, A M
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093
cites
container_end_page 268
container_issue 3-4
container_start_page 253
container_title Journal of engineering mathematics
container_volume 46
creator Gomilko, A M
description This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation and to provide a rigorous justification of the applicability of the method of superposition. Mellin's transform technique of investigating the asymptotic behaviour of unknown density when the argument tends to infinity is used.
doi_str_mv 10.1023/A:1025065714786
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27837774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27837774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093</originalsourceid><addsrcrecordid>eNotjjtPwzAYAD2ARCnMrJ7YAl_8jNmiCihSJRaYKz8-K0aJ08bO_6cSTDecdDpCHlp4aoHx5_7lAglK6lboTl2RDQBjDXSc35DbUn4AwHSCbci-pyEtyQ8jVnpaZjfiROO80DogdWmwyzTn5CmeV1vTnGnK1NKCU2pSjimnirTUJZ3uyHW0Y8H7f27J99vr127fHD7fP3b9ofGMQ20MCpBMtkK6DjvmjAQRI8qovQPwCrSxRungQwxK-Yvj0VljYrBcBjB8Sx7_upfZ84qlHqdUPI6jzTiv5ch0x7XWgv8CT5hOIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27837774</pqid></control><display><type>article</type><title>A dirichlet problem for the biharmonic equation in a semi-infinite strip</title><source>Springer Nature</source><creator>Gomilko, A M</creator><creatorcontrib>Gomilko, A M</creatorcontrib><description>This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation and to provide a rigorous justification of the applicability of the method of superposition. Mellin's transform technique of investigating the asymptotic behaviour of unknown density when the argument tends to infinity is used.</description><identifier>ISSN: 0022-0833</identifier><identifier>DOI: 10.1023/A:1025065714786</identifier><language>eng</language><ispartof>Journal of engineering mathematics, 2003-08, Vol.46 (3-4), p.253-268</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gomilko, A M</creatorcontrib><title>A dirichlet problem for the biharmonic equation in a semi-infinite strip</title><title>Journal of engineering mathematics</title><description>This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation and to provide a rigorous justification of the applicability of the method of superposition. Mellin's transform technique of investigating the asymptotic behaviour of unknown density when the argument tends to infinity is used.</description><issn>0022-0833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotjjtPwzAYAD2ARCnMrJ7YAl_8jNmiCihSJRaYKz8-K0aJ08bO_6cSTDecdDpCHlp4aoHx5_7lAglK6lboTl2RDQBjDXSc35DbUn4AwHSCbci-pyEtyQ8jVnpaZjfiROO80DogdWmwyzTn5CmeV1vTnGnK1NKCU2pSjimnirTUJZ3uyHW0Y8H7f27J99vr127fHD7fP3b9ofGMQ20MCpBMtkK6DjvmjAQRI8qovQPwCrSxRungQwxK-Yvj0VljYrBcBjB8Sx7_upfZ84qlHqdUPI6jzTiv5ch0x7XWgv8CT5hOIA</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Gomilko, A M</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030801</creationdate><title>A dirichlet problem for the biharmonic equation in a semi-infinite strip</title><author>Gomilko, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomilko, A M</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomilko, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dirichlet problem for the biharmonic equation in a semi-infinite strip</atitle><jtitle>Journal of engineering mathematics</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>46</volume><issue>3-4</issue><spage>253</spage><epage>268</epage><pages>253-268</pages><issn>0022-0833</issn><abstract>This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to clarify mathematical questions connected with the solution of a special integral equation and to provide a rigorous justification of the applicability of the method of superposition. Mellin's transform technique of investigating the asymptotic behaviour of unknown density when the argument tends to infinity is used.</abstract><doi>10.1023/A:1025065714786</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0833
ispartof Journal of engineering mathematics, 2003-08, Vol.46 (3-4), p.253-268
issn 0022-0833
language eng
recordid cdi_proquest_miscellaneous_27837774
source Springer Nature
title A dirichlet problem for the biharmonic equation in a semi-infinite strip
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dirichlet%20problem%20for%20the%20biharmonic%20equation%20in%20a%20semi-infinite%20strip&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Gomilko,%20A%20M&rft.date=2003-08-01&rft.volume=46&rft.issue=3-4&rft.spage=253&rft.epage=268&rft.pages=253-268&rft.issn=0022-0833&rft_id=info:doi/10.1023/A:1025065714786&rft_dat=%3Cproquest%3E27837774%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-9e40525145b8e82b9504ffe5f7cb00c6079a967dcdfd66c4ff3fba99fda35d093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27837774&rft_id=info:pmid/&rfr_iscdi=true