Loading…

3‐D molecular stars with covalent axial bonding

In designing three‐dimensional (3‐D) molecular stars, it is very difficult to enhance the molecular rigidity through forming the covalent bonds between the axial and equatorial groups because corresponding axial groups will generally break the delocalized π bond over equatorial frameworks and thus b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry 2023-06, Vol.44 (15), p.1410-1417
Main Authors: Guan, Xiao‐Ling, Sun, Rui, Jin, Bo, Yuan, Caixia, Wu, Yan‐Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3136-7a7e361e16c33b699ce8142409e15841c0fa885e0ad5f419f76dd1fbaf0c153b3
container_end_page 1417
container_issue 15
container_start_page 1410
container_title Journal of computational chemistry
container_volume 44
creator Guan, Xiao‐Ling
Sun, Rui
Jin, Bo
Yuan, Caixia
Wu, Yan‐Bo
description In designing three‐dimensional (3‐D) molecular stars, it is very difficult to enhance the molecular rigidity through forming the covalent bonds between the axial and equatorial groups because corresponding axial groups will generally break the delocalized π bond over equatorial frameworks and thus break their star‐like arrangement. In this work, exemplified by designing the 3‐D stars Be2©Be5E5+ (E = Au, Cl, Br, I) with three delocalized σ bonds and delocalized π bond over the central Be2©Be5 moiety, we propose that the desired covalent bonding can be achieved by forming the delocalized σ bond(s) and delocalized π bond(s) simultaneously between the axial groups and equatorial framework. The covalency and rigidity of axial bonding can be demonstrated by the total Wiberg bond indices of 1.46–1.65 for axial Be atoms and ultrashort Be‐Be distances of 1.834–1.841 Å, respectively. Beneficial also from the σ and π double aromaticity, these mono‐cationic 3‐D molecular stars are dynamically viable global energy minima with well‐defined electronic structures, as reflected by wide HOMO‐LUMO gaps (4.68–5.06 eV) and low electron affinities (4.70–4.82 eV), so they are the promising targets in the gas phase generation, mass‐separation, and spectroscopic characterization. The binary σ + π double aromatic three‐dimensional (3‐D) five‐point stars Be2©Be5E5+ (E = Au, Cl, Br, I) stars were confirmed to be the dynamically stable global energy minima. They are unprecedented in that their axial Be atoms interact with the equatorial group not through the ionic bond, but through four delocalized covalent bonds, which lead to the high molecular rigidity, as reflected by the ultrashort axial Be‐Be distance of 1.834–1.841 Å.
doi_str_mv 10.1002/jcc.27096
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2783790526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783790526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3136-7a7e361e16c33b699ce8142409e15841c0fa885e0ad5f419f76dd1fbaf0c153b3</originalsourceid><addsrcrecordid>eNp10LtOwzAUxnELgWgpDLwAisQCQ4qPHd9GFO6qxAISm-U4DqTKpcQJpRuPwDPyJARSGJCYzvLTp6M_QvuAp4AxOZlbOyUCK76BxtCfUEnxsInGGBQJJWcwQjvezzHGlPFoG40ol4IwBWME9OPt_Swo68LZrjBN4FvT-GCZt0-BrV9M4ao2MK-5KYKkrtK8etxFW5kpvNtb3wm6vzi_i6_C2e3ldXw6Cy0FykNhhKMcHHBLacKVsk5CRCKsHDAZgcWZkZI5bFKWRaAywdMUssRk2AKjCZ2go2F30dTPnfOtLnNvXVGYytWd10RIKhRmhPf08A-d111T9d9pIjGLiOBS9up4ULapvW9cphdNXppmpQHrr46676i_O_b2YL3YJaVLf-VPuB6cDGCZF271_5K-ieNh8hPxT3q2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805427688</pqid></control><display><type>article</type><title>3‐D molecular stars with covalent axial bonding</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Guan, Xiao‐Ling ; Sun, Rui ; Jin, Bo ; Yuan, Caixia ; Wu, Yan‐Bo</creator><creatorcontrib>Guan, Xiao‐Ling ; Sun, Rui ; Jin, Bo ; Yuan, Caixia ; Wu, Yan‐Bo</creatorcontrib><description>In designing three‐dimensional (3‐D) molecular stars, it is very difficult to enhance the molecular rigidity through forming the covalent bonds between the axial and equatorial groups because corresponding axial groups will generally break the delocalized π bond over equatorial frameworks and thus break their star‐like arrangement. In this work, exemplified by designing the 3‐D stars Be2©Be5E5+ (E = Au, Cl, Br, I) with three delocalized σ bonds and delocalized π bond over the central Be2©Be5 moiety, we propose that the desired covalent bonding can be achieved by forming the delocalized σ bond(s) and delocalized π bond(s) simultaneously between the axial groups and equatorial framework. The covalency and rigidity of axial bonding can be demonstrated by the total Wiberg bond indices of 1.46–1.65 for axial Be atoms and ultrashort Be‐Be distances of 1.834–1.841 Å, respectively. Beneficial also from the σ and π double aromaticity, these mono‐cationic 3‐D molecular stars are dynamically viable global energy minima with well‐defined electronic structures, as reflected by wide HOMO‐LUMO gaps (4.68–5.06 eV) and low electron affinities (4.70–4.82 eV), so they are the promising targets in the gas phase generation, mass‐separation, and spectroscopic characterization. The binary σ + π double aromatic three‐dimensional (3‐D) five‐point stars Be2©Be5E5+ (E = Au, Cl, Br, I) stars were confirmed to be the dynamically stable global energy minima. They are unprecedented in that their axial Be atoms interact with the equatorial group not through the ionic bond, but through four delocalized covalent bonds, which lead to the high molecular rigidity, as reflected by the ultrashort axial Be‐Be distance of 1.834–1.841 Å.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.27096</identifier><identifier>PMID: 36872591</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aromaticity ; beryllium ; Chemical bonds ; Covalence ; Covalent bonds ; global energy minimum ; isoelectronic substitution ; Molecular orbitals ; multicenter bonds ; Rigidity ; Star formation ; Stars ; ultrashort metal–metal distance ; Vapor phases</subject><ispartof>Journal of computational chemistry, 2023-06, Vol.44 (15), p.1410-1417</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3136-7a7e361e16c33b699ce8142409e15841c0fa885e0ad5f419f76dd1fbaf0c153b3</cites><orcidid>0000-0001-6032-9957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36872591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Xiao‐Ling</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Yuan, Caixia</creatorcontrib><creatorcontrib>Wu, Yan‐Bo</creatorcontrib><title>3‐D molecular stars with covalent axial bonding</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>In designing three‐dimensional (3‐D) molecular stars, it is very difficult to enhance the molecular rigidity through forming the covalent bonds between the axial and equatorial groups because corresponding axial groups will generally break the delocalized π bond over equatorial frameworks and thus break their star‐like arrangement. In this work, exemplified by designing the 3‐D stars Be2©Be5E5+ (E = Au, Cl, Br, I) with three delocalized σ bonds and delocalized π bond over the central Be2©Be5 moiety, we propose that the desired covalent bonding can be achieved by forming the delocalized σ bond(s) and delocalized π bond(s) simultaneously between the axial groups and equatorial framework. The covalency and rigidity of axial bonding can be demonstrated by the total Wiberg bond indices of 1.46–1.65 for axial Be atoms and ultrashort Be‐Be distances of 1.834–1.841 Å, respectively. Beneficial also from the σ and π double aromaticity, these mono‐cationic 3‐D molecular stars are dynamically viable global energy minima with well‐defined electronic structures, as reflected by wide HOMO‐LUMO gaps (4.68–5.06 eV) and low electron affinities (4.70–4.82 eV), so they are the promising targets in the gas phase generation, mass‐separation, and spectroscopic characterization. The binary σ + π double aromatic three‐dimensional (3‐D) five‐point stars Be2©Be5E5+ (E = Au, Cl, Br, I) stars were confirmed to be the dynamically stable global energy minima. They are unprecedented in that their axial Be atoms interact with the equatorial group not through the ionic bond, but through four delocalized covalent bonds, which lead to the high molecular rigidity, as reflected by the ultrashort axial Be‐Be distance of 1.834–1.841 Å.</description><subject>Aromaticity</subject><subject>beryllium</subject><subject>Chemical bonds</subject><subject>Covalence</subject><subject>Covalent bonds</subject><subject>global energy minimum</subject><subject>isoelectronic substitution</subject><subject>Molecular orbitals</subject><subject>multicenter bonds</subject><subject>Rigidity</subject><subject>Star formation</subject><subject>Stars</subject><subject>ultrashort metal–metal distance</subject><subject>Vapor phases</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUxnELgWgpDLwAisQCQ4qPHd9GFO6qxAISm-U4DqTKpcQJpRuPwDPyJARSGJCYzvLTp6M_QvuAp4AxOZlbOyUCK76BxtCfUEnxsInGGBQJJWcwQjvezzHGlPFoG40ol4IwBWME9OPt_Swo68LZrjBN4FvT-GCZt0-BrV9M4ao2MK-5KYKkrtK8etxFW5kpvNtb3wm6vzi_i6_C2e3ldXw6Cy0FykNhhKMcHHBLacKVsk5CRCKsHDAZgcWZkZI5bFKWRaAywdMUssRk2AKjCZ2go2F30dTPnfOtLnNvXVGYytWd10RIKhRmhPf08A-d111T9d9pIjGLiOBS9up4ULapvW9cphdNXppmpQHrr46676i_O_b2YL3YJaVLf-VPuB6cDGCZF271_5K-ieNh8hPxT3q2</recordid><startdate>20230605</startdate><enddate>20230605</enddate><creator>Guan, Xiao‐Ling</creator><creator>Sun, Rui</creator><creator>Jin, Bo</creator><creator>Yuan, Caixia</creator><creator>Wu, Yan‐Bo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6032-9957</orcidid></search><sort><creationdate>20230605</creationdate><title>3‐D molecular stars with covalent axial bonding</title><author>Guan, Xiao‐Ling ; Sun, Rui ; Jin, Bo ; Yuan, Caixia ; Wu, Yan‐Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3136-7a7e361e16c33b699ce8142409e15841c0fa885e0ad5f419f76dd1fbaf0c153b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aromaticity</topic><topic>beryllium</topic><topic>Chemical bonds</topic><topic>Covalence</topic><topic>Covalent bonds</topic><topic>global energy minimum</topic><topic>isoelectronic substitution</topic><topic>Molecular orbitals</topic><topic>multicenter bonds</topic><topic>Rigidity</topic><topic>Star formation</topic><topic>Stars</topic><topic>ultrashort metal–metal distance</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Xiao‐Ling</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Yuan, Caixia</creatorcontrib><creatorcontrib>Wu, Yan‐Bo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Xiao‐Ling</au><au>Sun, Rui</au><au>Jin, Bo</au><au>Yuan, Caixia</au><au>Wu, Yan‐Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3‐D molecular stars with covalent axial bonding</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2023-06-05</date><risdate>2023</risdate><volume>44</volume><issue>15</issue><spage>1410</spage><epage>1417</epage><pages>1410-1417</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>In designing three‐dimensional (3‐D) molecular stars, it is very difficult to enhance the molecular rigidity through forming the covalent bonds between the axial and equatorial groups because corresponding axial groups will generally break the delocalized π bond over equatorial frameworks and thus break their star‐like arrangement. In this work, exemplified by designing the 3‐D stars Be2©Be5E5+ (E = Au, Cl, Br, I) with three delocalized σ bonds and delocalized π bond over the central Be2©Be5 moiety, we propose that the desired covalent bonding can be achieved by forming the delocalized σ bond(s) and delocalized π bond(s) simultaneously between the axial groups and equatorial framework. The covalency and rigidity of axial bonding can be demonstrated by the total Wiberg bond indices of 1.46–1.65 for axial Be atoms and ultrashort Be‐Be distances of 1.834–1.841 Å, respectively. Beneficial also from the σ and π double aromaticity, these mono‐cationic 3‐D molecular stars are dynamically viable global energy minima with well‐defined electronic structures, as reflected by wide HOMO‐LUMO gaps (4.68–5.06 eV) and low electron affinities (4.70–4.82 eV), so they are the promising targets in the gas phase generation, mass‐separation, and spectroscopic characterization. The binary σ + π double aromatic three‐dimensional (3‐D) five‐point stars Be2©Be5E5+ (E = Au, Cl, Br, I) stars were confirmed to be the dynamically stable global energy minima. They are unprecedented in that their axial Be atoms interact with the equatorial group not through the ionic bond, but through four delocalized covalent bonds, which lead to the high molecular rigidity, as reflected by the ultrashort axial Be‐Be distance of 1.834–1.841 Å.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36872591</pmid><doi>10.1002/jcc.27096</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6032-9957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2023-06, Vol.44 (15), p.1410-1417
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2783790526
source Wiley-Blackwell Read & Publish Collection
subjects Aromaticity
beryllium
Chemical bonds
Covalence
Covalent bonds
global energy minimum
isoelectronic substitution
Molecular orbitals
multicenter bonds
Rigidity
Star formation
Stars
ultrashort metal–metal distance
Vapor phases
title 3‐D molecular stars with covalent axial bonding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3%E2%80%90D%20molecular%20stars%20with%20covalent%20axial%20bonding&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Guan,%20Xiao%E2%80%90Ling&rft.date=2023-06-05&rft.volume=44&rft.issue=15&rft.spage=1410&rft.epage=1417&rft.pages=1410-1417&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.27096&rft_dat=%3Cproquest_cross%3E2783790526%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3136-7a7e361e16c33b699ce8142409e15841c0fa885e0ad5f419f76dd1fbaf0c153b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805427688&rft_id=info:pmid/36872591&rfr_iscdi=true