Loading…

Vancomycin Loaded Amino-Functionalized MCM-48 Mesoporous Silica Nanoparticles as a Promising Drug Carrier in Bone Substitutes for Bacterial Infection Management

Orthopedic infections due to biofilm formation in biomaterial-based implants have become challenging in bone tissue engineering. In the present study, in vitro antibacterial analysis of amino-functionalized MCM-48 mesoporous silica nanoparticles (AF-MSNs) loaded with vancomycin is analyzed for its p...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology 2023-11, Vol.195 (11), p.6607-6632
Main Authors: Rahaman, Syed Nasar, Pathmanapan, Srinivetha, Sidharthan, Anbarasi, Anandasadagopan, Suresh Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Orthopedic infections due to biofilm formation in biomaterial-based implants have become challenging in bone tissue engineering. In the present study, in vitro antibacterial analysis of amino-functionalized MCM-48 mesoporous silica nanoparticles (AF-MSNs) loaded with vancomycin is analyzed for its potential as a drug carrier for the sustained/controlled release of vancomycin against Staphylococcus aureus . The effective incorporation of vancomycin into the inner core of AF-MSNs was observed by alternation in the absorption frequencies obtained by Fourier transform infrared spectroscopy (FTIR). Dynamic light scattering (DLS) and high resolution-transmission electron microscopy (HR-TEM) results show that all the AF-MSNs had homogeneous spherical shapes with a mean diameter of 165.2 ± 1.25 nm, and there is a slight change in the hydrodynamic diameter after vancomycin loading. Furthermore, the zeta potential of all the AF-MSNs (+ 30.5 ± 0.54 mV) and AF-MSN/VA (+ 33.3 ± 0.56 mV) were positively charged due to effective functionalization with 3-aminopropyl triethoxysilane (APTES). Furthermore, cytotoxicity results show that the AF-MSNs have better biocompatibility than non-functionalized MSNs ( p  
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-023-04406-z