Loading…

A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate

A new monthly volcanic forcing dataset is included in a coupled GCM for a more physically consistent treatment of the stratospheric sulfate aerosol history from explosive volcanism. The volcanic forcing is different from previous versions in that there is an individual evolution of the aerosol for e...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2003-06, Vol.30 (12), p.59.1-n/a
Main Authors: Ammann, Caspar M., Meehl, Gerald A., Washington, Warren M., Zender, Charles S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new monthly volcanic forcing dataset is included in a coupled GCM for a more physically consistent treatment of the stratospheric sulfate aerosol history from explosive volcanism. The volcanic forcing is different from previous versions in that there is an individual evolution of the aerosol for each event. Thus the seasonal and latitudinal dependence of the volcanic aerosol can affect global climate in a more realistic way prior to the satellite period, compared to earlier volcanic forcing datasets. Negative radiative forcing from volcanic activity is greatest in the early 20th century prior to 1915 and in the late 20th century after 1960. The combination of volcanic and solar forcing contributes to an early‐20th century warming, followed by relative cooling in late 20th century. Consequently, the addition of natural forcing factors to the anthropogenic GHG forcing in late 20th century is required to simulate the observed late 20th century warming.
ISSN:0094-8276
1944-8007
DOI:10.1029/2003GL016875