Loading…

Not Just Surface Energy: The Role of Bis(pentafluorophenoxy) Silicon Phthalocyanine Axial Functionalization and Molecular Orientation on Organic Thin-Film Transistor Performance

Understanding the effect of surface chemistry on the dielectric–semiconductor interface, thin-film morphology, and molecular alignment enables the optimization of organic thin-film transistors (OTFTs). We explored the properties of thin films of bis­(pentafluorophenoxy) silicon phthalocyanine (F10-S...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-03, Vol.15 (11), p.14937-14947
Main Authors: King, Benjamin, Radford, Chase L., Vebber, Mário C., Ronnasi, Bahar, Lessard, Benoît H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-43e888e8135267d8faf85112b91e435f586babeec457ad75299f4dc55bc14b33
cites cdi_FETCH-LOGICAL-a330t-43e888e8135267d8faf85112b91e435f586babeec457ad75299f4dc55bc14b33
container_end_page 14947
container_issue 11
container_start_page 14937
container_title ACS applied materials & interfaces
container_volume 15
creator King, Benjamin
Radford, Chase L.
Vebber, Mário C.
Ronnasi, Bahar
Lessard, Benoît H.
description Understanding the effect of surface chemistry on the dielectric–semiconductor interface, thin-film morphology, and molecular alignment enables the optimization of organic thin-film transistors (OTFTs). We explored the properties of thin films of bis­(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) evaporated onto silicon dioxide (SiO2) surfaces modified by self-assembled monolayers (SAMs) of varying surface energies and by weak epitaxy growth (WEG). The total surface energy (γtot), dispersive component of the total surface energy (γd), and polar component of the total surface energy (γp) were calculated using the Owens–Wendt method and related to electron field-effect mobility of devices (μe), and it was determined that minimizing γp and matching γtot yielded films with the largest relative domain sizes and highest resulting μe. Subsequent analyses were completed using atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) to relate surface chemistry to thin-film morphology and molecular order at the surface and semiconductor–dielectric interface, respectively. Films evaporated on n-octyltrichlorosilane (OTS) yielded devices with the highest average μe of 7.2 × 10–2 cm2·V–1·s–1 that we attributed to it having both the largest domain length, which were extracted from power spectral density function (PSDF) analysis, and a subset of molecules with a pseudo edge-on orientation relative to the substrate. Films of F10-SiPc with the mean molecular orientation of the π-stacking direction being more edge-on relative to the substrate also generally resulted in OTFTs with a lower average V T. Unlike conventional MPcs, F10-SiPc films fabricated by WEG experienced no macrocycle in an edge-on configuration. These results demonstrate the critical role of the F10-SiPc axial groups on WEG, molecular orientation, and film morphology as a function of surface chemistry and the choice of SAMs.
doi_str_mv 10.1021/acsami.2c22789
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2786096936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786096936</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-43e888e8135267d8faf85112b91e435f586babeec457ad75299f4dc55bc14b33</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEoqWwZYm8LEgZ_BMnDrtSdfhRYSo6--jGue64cuzBTqQOb8Ub4mGG7pAs-Ur-zmfpnqJ4zeiCUc7eg04w2gXXnDeqfVKcsraqSsUlf_o4V9VJ8SKle0prwal8XpyIWrUNbeRp8ft7mMjXOU3kdo4GNJIrj_Fu94GsN0h-BIckGPLRpvMt-gmMm0MM2w368LB7S26tszp4crOZNuCC3oG3HsnFgwVHlrPXkw0enP0F-4GAH8i3rNSzg0hW0e6Vf1_yWcW7nNb5X-vLpXUjWUfwyaYpRHKD0YQ4gtf4snhmwCV8dbzPivXyan35ubxeffpyeXFdghB0KiuBSilUTEheN4MyYJRkjPctw0pII1XdQ4-oK9nA0EjetqYatJS9ZlUvxFlxftBuY_g5Y5q60SaNzoHHMKcur7umbd2KOqOLA6pjSCmi6bbRjhB3HaPdvqXu0FJ3bCkH3hzdcz_i8Ij_qyUD7w5ADnb3YY55iel_tj998qDP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786096936</pqid></control><display><type>article</type><title>Not Just Surface Energy: The Role of Bis(pentafluorophenoxy) Silicon Phthalocyanine Axial Functionalization and Molecular Orientation on Organic Thin-Film Transistor Performance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>King, Benjamin ; Radford, Chase L. ; Vebber, Mário C. ; Ronnasi, Bahar ; Lessard, Benoît H.</creator><creatorcontrib>King, Benjamin ; Radford, Chase L. ; Vebber, Mário C. ; Ronnasi, Bahar ; Lessard, Benoît H.</creatorcontrib><description>Understanding the effect of surface chemistry on the dielectric–semiconductor interface, thin-film morphology, and molecular alignment enables the optimization of organic thin-film transistors (OTFTs). We explored the properties of thin films of bis­(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) evaporated onto silicon dioxide (SiO2) surfaces modified by self-assembled monolayers (SAMs) of varying surface energies and by weak epitaxy growth (WEG). The total surface energy (γtot), dispersive component of the total surface energy (γd), and polar component of the total surface energy (γp) were calculated using the Owens–Wendt method and related to electron field-effect mobility of devices (μe), and it was determined that minimizing γp and matching γtot yielded films with the largest relative domain sizes and highest resulting μe. Subsequent analyses were completed using atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) to relate surface chemistry to thin-film morphology and molecular order at the surface and semiconductor–dielectric interface, respectively. Films evaporated on n-octyltrichlorosilane (OTS) yielded devices with the highest average μe of 7.2 × 10–2 cm2·V–1·s–1 that we attributed to it having both the largest domain length, which were extracted from power spectral density function (PSDF) analysis, and a subset of molecules with a pseudo edge-on orientation relative to the substrate. Films of F10-SiPc with the mean molecular orientation of the π-stacking direction being more edge-on relative to the substrate also generally resulted in OTFTs with a lower average V T. Unlike conventional MPcs, F10-SiPc films fabricated by WEG experienced no macrocycle in an edge-on configuration. These results demonstrate the critical role of the F10-SiPc axial groups on WEG, molecular orientation, and film morphology as a function of surface chemistry and the choice of SAMs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c22789</identifier><identifier>PMID: 36897075</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-03, Vol.15 (11), p.14937-14947</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-43e888e8135267d8faf85112b91e435f586babeec457ad75299f4dc55bc14b33</citedby><cites>FETCH-LOGICAL-a330t-43e888e8135267d8faf85112b91e435f586babeec457ad75299f4dc55bc14b33</cites><orcidid>0000-0002-8081-085X ; 0000-0002-9863-7039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36897075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>King, Benjamin</creatorcontrib><creatorcontrib>Radford, Chase L.</creatorcontrib><creatorcontrib>Vebber, Mário C.</creatorcontrib><creatorcontrib>Ronnasi, Bahar</creatorcontrib><creatorcontrib>Lessard, Benoît H.</creatorcontrib><title>Not Just Surface Energy: The Role of Bis(pentafluorophenoxy) Silicon Phthalocyanine Axial Functionalization and Molecular Orientation on Organic Thin-Film Transistor Performance</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Understanding the effect of surface chemistry on the dielectric–semiconductor interface, thin-film morphology, and molecular alignment enables the optimization of organic thin-film transistors (OTFTs). We explored the properties of thin films of bis­(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) evaporated onto silicon dioxide (SiO2) surfaces modified by self-assembled monolayers (SAMs) of varying surface energies and by weak epitaxy growth (WEG). The total surface energy (γtot), dispersive component of the total surface energy (γd), and polar component of the total surface energy (γp) were calculated using the Owens–Wendt method and related to electron field-effect mobility of devices (μe), and it was determined that minimizing γp and matching γtot yielded films with the largest relative domain sizes and highest resulting μe. Subsequent analyses were completed using atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) to relate surface chemistry to thin-film morphology and molecular order at the surface and semiconductor–dielectric interface, respectively. Films evaporated on n-octyltrichlorosilane (OTS) yielded devices with the highest average μe of 7.2 × 10–2 cm2·V–1·s–1 that we attributed to it having both the largest domain length, which were extracted from power spectral density function (PSDF) analysis, and a subset of molecules with a pseudo edge-on orientation relative to the substrate. Films of F10-SiPc with the mean molecular orientation of the π-stacking direction being more edge-on relative to the substrate also generally resulted in OTFTs with a lower average V T. Unlike conventional MPcs, F10-SiPc films fabricated by WEG experienced no macrocycle in an edge-on configuration. These results demonstrate the critical role of the F10-SiPc axial groups on WEG, molecular orientation, and film morphology as a function of surface chemistry and the choice of SAMs.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhSMEoqWwZYm8LEgZ_BMnDrtSdfhRYSo6--jGue64cuzBTqQOb8Ub4mGG7pAs-Ur-zmfpnqJ4zeiCUc7eg04w2gXXnDeqfVKcsraqSsUlf_o4V9VJ8SKle0prwal8XpyIWrUNbeRp8ft7mMjXOU3kdo4GNJIrj_Fu94GsN0h-BIckGPLRpvMt-gmMm0MM2w368LB7S26tszp4crOZNuCC3oG3HsnFgwVHlrPXkw0enP0F-4GAH8i3rNSzg0hW0e6Vf1_yWcW7nNb5X-vLpXUjWUfwyaYpRHKD0YQ4gtf4snhmwCV8dbzPivXyan35ubxeffpyeXFdghB0KiuBSilUTEheN4MyYJRkjPctw0pII1XdQ4-oK9nA0EjetqYatJS9ZlUvxFlxftBuY_g5Y5q60SaNzoHHMKcur7umbd2KOqOLA6pjSCmi6bbRjhB3HaPdvqXu0FJ3bCkH3hzdcz_i8Ij_qyUD7w5ADnb3YY55iel_tj998qDP</recordid><startdate>20230310</startdate><enddate>20230310</enddate><creator>King, Benjamin</creator><creator>Radford, Chase L.</creator><creator>Vebber, Mário C.</creator><creator>Ronnasi, Bahar</creator><creator>Lessard, Benoît H.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8081-085X</orcidid><orcidid>https://orcid.org/0000-0002-9863-7039</orcidid></search><sort><creationdate>20230310</creationdate><title>Not Just Surface Energy: The Role of Bis(pentafluorophenoxy) Silicon Phthalocyanine Axial Functionalization and Molecular Orientation on Organic Thin-Film Transistor Performance</title><author>King, Benjamin ; Radford, Chase L. ; Vebber, Mário C. ; Ronnasi, Bahar ; Lessard, Benoît H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-43e888e8135267d8faf85112b91e435f586babeec457ad75299f4dc55bc14b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Benjamin</creatorcontrib><creatorcontrib>Radford, Chase L.</creatorcontrib><creatorcontrib>Vebber, Mário C.</creatorcontrib><creatorcontrib>Ronnasi, Bahar</creatorcontrib><creatorcontrib>Lessard, Benoît H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Benjamin</au><au>Radford, Chase L.</au><au>Vebber, Mário C.</au><au>Ronnasi, Bahar</au><au>Lessard, Benoît H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Not Just Surface Energy: The Role of Bis(pentafluorophenoxy) Silicon Phthalocyanine Axial Functionalization and Molecular Orientation on Organic Thin-Film Transistor Performance</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-03-10</date><risdate>2023</risdate><volume>15</volume><issue>11</issue><spage>14937</spage><epage>14947</epage><pages>14937-14947</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Understanding the effect of surface chemistry on the dielectric–semiconductor interface, thin-film morphology, and molecular alignment enables the optimization of organic thin-film transistors (OTFTs). We explored the properties of thin films of bis­(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) evaporated onto silicon dioxide (SiO2) surfaces modified by self-assembled monolayers (SAMs) of varying surface energies and by weak epitaxy growth (WEG). The total surface energy (γtot), dispersive component of the total surface energy (γd), and polar component of the total surface energy (γp) were calculated using the Owens–Wendt method and related to electron field-effect mobility of devices (μe), and it was determined that minimizing γp and matching γtot yielded films with the largest relative domain sizes and highest resulting μe. Subsequent analyses were completed using atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) to relate surface chemistry to thin-film morphology and molecular order at the surface and semiconductor–dielectric interface, respectively. Films evaporated on n-octyltrichlorosilane (OTS) yielded devices with the highest average μe of 7.2 × 10–2 cm2·V–1·s–1 that we attributed to it having both the largest domain length, which were extracted from power spectral density function (PSDF) analysis, and a subset of molecules with a pseudo edge-on orientation relative to the substrate. Films of F10-SiPc with the mean molecular orientation of the π-stacking direction being more edge-on relative to the substrate also generally resulted in OTFTs with a lower average V T. Unlike conventional MPcs, F10-SiPc films fabricated by WEG experienced no macrocycle in an edge-on configuration. These results demonstrate the critical role of the F10-SiPc axial groups on WEG, molecular orientation, and film morphology as a function of surface chemistry and the choice of SAMs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36897075</pmid><doi>10.1021/acsami.2c22789</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8081-085X</orcidid><orcidid>https://orcid.org/0000-0002-9863-7039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-03, Vol.15 (11), p.14937-14947
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2786096936
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Surfaces, Interfaces, and Applications
title Not Just Surface Energy: The Role of Bis(pentafluorophenoxy) Silicon Phthalocyanine Axial Functionalization and Molecular Orientation on Organic Thin-Film Transistor Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Not%20Just%20Surface%20Energy:%20The%20Role%20of%20Bis(pentafluorophenoxy)%20Silicon%20Phthalocyanine%20Axial%20Functionalization%20and%20Molecular%20Orientation%20on%20Organic%20Thin-Film%20Transistor%20Performance&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=King,%20Benjamin&rft.date=2023-03-10&rft.volume=15&rft.issue=11&rft.spage=14937&rft.epage=14947&rft.pages=14937-14947&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c22789&rft_dat=%3Cproquest_cross%3E2786096936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-43e888e8135267d8faf85112b91e435f586babeec457ad75299f4dc55bc14b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786096936&rft_id=info:pmid/36897075&rfr_iscdi=true