Loading…
Screening, identification, and characterization of lipase-producing halotolerant Bacillus altitudinis Ant19 from Antarctic soil
Potent lipase-producing and halotolerant Bacillus altitudinis Ant19 strain was screened and isolated from Antarctic soil. The isolate showed broad-range lipase activity against different lipid substrates. Presence of lipase activity was confirmed by PCR amplification and sequencing of the lipase gen...
Saved in:
Published in: | Archives of microbiology 2023-04, Vol.205 (4), p.113-113, Article 113 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Potent lipase-producing and halotolerant
Bacillus altitudinis
Ant19 strain was screened and isolated from Antarctic soil. The isolate showed broad-range lipase activity against different lipid substrates. Presence of lipase activity was confirmed by PCR amplification and sequencing of the lipase gene from Ant19. The study attempted to establish the use of crude extracellular lipase extract as cheap alternative to purified enzyme by characterizing the crude lipase activity and testing it in certain practical applications. Crude lipase extract from Ant19 showed high stability at 5–28 ℃ (> 97%), while lipase activity was noted in a wide temperature range of 20–60 ℃ (> 69%), with optimum activity at 40 ℃ (117.6%). The optimum lipolytic activity was noted at pH 8 with good activity and stability in alkaline conditions (pH 7–10). Moreover, the lipase activity was substantially stable in various solvents, commercial detergents, and surfactants. It retained 97.4% activity in 1% solution of commercial Nirma detergent. Besides, it was non-regiospecific, and active against substrates having different fatty acid chain lengths with preference for shorter chain length. Further, the crude lipase enhanced the oil stain removal efficiency of commercial detergent from 52 to 77.9%, while 66% oil stain was removed using crude lipase alone. Immobilization process improved the storage stability of crude lipase for 90 days. In our knowledge, it is the first study on characterization of lipase activity from
B. altitudinis
, which has promising applications in various fields. |
---|---|
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/s00203-023-03453-8 |