Loading…

Implantation of ions produced by the use of high power iodine laser

The iodine high power Prague Asterix Laser System (PALS), emitting radiation at 438 nm wavelength (3rd-harmonic of a fundamental radiation wavelength equal to 1315 nm), was employed to irradiate in vacuum different metallic targets (Cu, Ag and Ta). The high energy (up to 230 J) short (400 ps) laser...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2003-07, Vol.217 (1), p.319-331
Main Authors: Torrisi, L, Gammino, S, Mezzasalma, A.M, Badziak, J, Parys, P, Wolowski, J, Woryna, E, Krása, J, Láska, L, Pfeifer, M, Rohlena, K, Boody, F.P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-f6c2ff4c27b97d26bf5f6c6e5041b4211b79c152b5014817438bc45c5e4c9e523
cites cdi_FETCH-LOGICAL-c368t-f6c2ff4c27b97d26bf5f6c6e5041b4211b79c152b5014817438bc45c5e4c9e523
container_end_page 331
container_issue 1
container_start_page 319
container_title Applied surface science
container_volume 217
creator Torrisi, L
Gammino, S
Mezzasalma, A.M
Badziak, J
Parys, P
Wolowski, J
Woryna, E
Krása, J
Láska, L
Pfeifer, M
Rohlena, K
Boody, F.P
description The iodine high power Prague Asterix Laser System (PALS), emitting radiation at 438 nm wavelength (3rd-harmonic of a fundamental radiation wavelength equal to 1315 nm), was employed to irradiate in vacuum different metallic targets (Cu, Ag and Ta). The high energy (up to 230 J) short (400 ps) laser pulses produce non-equilibrium plasma expanding mainly along the normal to the target surface. Plasma contains high charge state ions, with maximum charge states of 27 +, 36 + and 49 + for Cu, Ag and Ta, respectively. Time-of-flight (TOF) measurements, performed with the use of an electrostatic ion energy analyser (IEA) placed along the target normal, indicate that the maximum recorded ion kinetic energy is higher than 900 keV for Cu and Ag ions and than 5 MeV for Ta. The laser-produced ions have been implanted into different substrates (polymers, C, Al, Si and Ti) placed at different distances and angles with respect to the target normal. In order to investigate an implantation depth, a density profile of implanted ions and an implanted dose, the samples have been analysed by using the 1.7 MeV helium Rutherford backscattering spectrometry (RBS). The energies of the ions determined with the use of the RBS analysis are in a good agreement with the ion energies measured with the use of the IEA. The results are presented and discussed giving a special attention to the potential of the ion implantation method for modifying the chemical and physical properties of the implanted materials.
doi_str_mv 10.1016/S0169-4332(03)00551-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27861915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433203005518</els_id><sourcerecordid>27861915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-f6c2ff4c27b97d26bf5f6c6e5041b4211b79c152b5014817438bc45c5e4c9e523</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMouK7-BCEXRQ_VPNv0JLL4WFjwoJ5Dmk7cSLetSavsvze7K3r0MgMz32QmH0KnlFxRQvPr5xTKTHDOLgi_JERKmqk9NKGq4JmUSuyjyS9yiI5ifCeEstSdoNl81TemHczguxZ3DqcUcR-6erRQ42qNhyXgMcKmt_RvS9x3XxASVvsWcGMihGN04EwT4eQnT9Hr_d3L7DFbPD3MZ7eLzPJcDZnLLXNOWFZUZVGzvHIylXKQRNBKMEqrorRUskoSKhQtBFeVFdJKELYEyfgUne_eTed9jBAHvfLRQpPuh26MmhUqpyWVCZQ70IYuxgBO98GvTFhrSvRGmd4q0xsfmnC9VaZVmjv7WWCiNY0LprU-_g2LkpdMiMTd7DhIv_30EHS0HtokzAewg647_8-mb7X7fvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27861915</pqid></control><display><type>article</type><title>Implantation of ions produced by the use of high power iodine laser</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Torrisi, L ; Gammino, S ; Mezzasalma, A.M ; Badziak, J ; Parys, P ; Wolowski, J ; Woryna, E ; Krása, J ; Láska, L ; Pfeifer, M ; Rohlena, K ; Boody, F.P</creator><creatorcontrib>Torrisi, L ; Gammino, S ; Mezzasalma, A.M ; Badziak, J ; Parys, P ; Wolowski, J ; Woryna, E ; Krása, J ; Láska, L ; Pfeifer, M ; Rohlena, K ; Boody, F.P</creatorcontrib><description>The iodine high power Prague Asterix Laser System (PALS), emitting radiation at 438 nm wavelength (3rd-harmonic of a fundamental radiation wavelength equal to 1315 nm), was employed to irradiate in vacuum different metallic targets (Cu, Ag and Ta). The high energy (up to 230 J) short (400 ps) laser pulses produce non-equilibrium plasma expanding mainly along the normal to the target surface. Plasma contains high charge state ions, with maximum charge states of 27 +, 36 + and 49 + for Cu, Ag and Ta, respectively. Time-of-flight (TOF) measurements, performed with the use of an electrostatic ion energy analyser (IEA) placed along the target normal, indicate that the maximum recorded ion kinetic energy is higher than 900 keV for Cu and Ag ions and than 5 MeV for Ta. The laser-produced ions have been implanted into different substrates (polymers, C, Al, Si and Ti) placed at different distances and angles with respect to the target normal. In order to investigate an implantation depth, a density profile of implanted ions and an implanted dose, the samples have been analysed by using the 1.7 MeV helium Rutherford backscattering spectrometry (RBS). The energies of the ions determined with the use of the RBS analysis are in a good agreement with the ion energies measured with the use of the IEA. The results are presented and discussed giving a special attention to the potential of the ion implantation method for modifying the chemical and physical properties of the implanted materials.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/S0169-4332(03)00551-8</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Ion implantation ; Laser ablation ; Laser-plasma interactions ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma-laser ; Time-of-flight</subject><ispartof>Applied surface science, 2003-07, Vol.217 (1), p.319-331</ispartof><rights>2003 Elsevier Science B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-f6c2ff4c27b97d26bf5f6c6e5041b4211b79c152b5014817438bc45c5e4c9e523</citedby><cites>FETCH-LOGICAL-c368t-f6c2ff4c27b97d26bf5f6c6e5041b4211b79c152b5014817438bc45c5e4c9e523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14939244$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Torrisi, L</creatorcontrib><creatorcontrib>Gammino, S</creatorcontrib><creatorcontrib>Mezzasalma, A.M</creatorcontrib><creatorcontrib>Badziak, J</creatorcontrib><creatorcontrib>Parys, P</creatorcontrib><creatorcontrib>Wolowski, J</creatorcontrib><creatorcontrib>Woryna, E</creatorcontrib><creatorcontrib>Krása, J</creatorcontrib><creatorcontrib>Láska, L</creatorcontrib><creatorcontrib>Pfeifer, M</creatorcontrib><creatorcontrib>Rohlena, K</creatorcontrib><creatorcontrib>Boody, F.P</creatorcontrib><title>Implantation of ions produced by the use of high power iodine laser</title><title>Applied surface science</title><description>The iodine high power Prague Asterix Laser System (PALS), emitting radiation at 438 nm wavelength (3rd-harmonic of a fundamental radiation wavelength equal to 1315 nm), was employed to irradiate in vacuum different metallic targets (Cu, Ag and Ta). The high energy (up to 230 J) short (400 ps) laser pulses produce non-equilibrium plasma expanding mainly along the normal to the target surface. Plasma contains high charge state ions, with maximum charge states of 27 +, 36 + and 49 + for Cu, Ag and Ta, respectively. Time-of-flight (TOF) measurements, performed with the use of an electrostatic ion energy analyser (IEA) placed along the target normal, indicate that the maximum recorded ion kinetic energy is higher than 900 keV for Cu and Ag ions and than 5 MeV for Ta. The laser-produced ions have been implanted into different substrates (polymers, C, Al, Si and Ti) placed at different distances and angles with respect to the target normal. In order to investigate an implantation depth, a density profile of implanted ions and an implanted dose, the samples have been analysed by using the 1.7 MeV helium Rutherford backscattering spectrometry (RBS). The energies of the ions determined with the use of the RBS analysis are in a good agreement with the ion energies measured with the use of the IEA. The results are presented and discussed giving a special attention to the potential of the ion implantation method for modifying the chemical and physical properties of the implanted materials.</description><subject>Exact sciences and technology</subject><subject>Ion implantation</subject><subject>Laser ablation</subject><subject>Laser-plasma interactions</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma-laser</subject><subject>Time-of-flight</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQgIMouK7-BCEXRQ_VPNv0JLL4WFjwoJ5Dmk7cSLetSavsvze7K3r0MgMz32QmH0KnlFxRQvPr5xTKTHDOLgi_JERKmqk9NKGq4JmUSuyjyS9yiI5ifCeEstSdoNl81TemHczguxZ3DqcUcR-6erRQ42qNhyXgMcKmt_RvS9x3XxASVvsWcGMihGN04EwT4eQnT9Hr_d3L7DFbPD3MZ7eLzPJcDZnLLXNOWFZUZVGzvHIylXKQRNBKMEqrorRUskoSKhQtBFeVFdJKELYEyfgUne_eTed9jBAHvfLRQpPuh26MmhUqpyWVCZQ70IYuxgBO98GvTFhrSvRGmd4q0xsfmnC9VaZVmjv7WWCiNY0LprU-_g2LkpdMiMTd7DhIv_30EHS0HtokzAewg647_8-mb7X7fvY</recordid><startdate>20030715</startdate><enddate>20030715</enddate><creator>Torrisi, L</creator><creator>Gammino, S</creator><creator>Mezzasalma, A.M</creator><creator>Badziak, J</creator><creator>Parys, P</creator><creator>Wolowski, J</creator><creator>Woryna, E</creator><creator>Krása, J</creator><creator>Láska, L</creator><creator>Pfeifer, M</creator><creator>Rohlena, K</creator><creator>Boody, F.P</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030715</creationdate><title>Implantation of ions produced by the use of high power iodine laser</title><author>Torrisi, L ; Gammino, S ; Mezzasalma, A.M ; Badziak, J ; Parys, P ; Wolowski, J ; Woryna, E ; Krása, J ; Láska, L ; Pfeifer, M ; Rohlena, K ; Boody, F.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-f6c2ff4c27b97d26bf5f6c6e5041b4211b79c152b5014817438bc45c5e4c9e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Ion implantation</topic><topic>Laser ablation</topic><topic>Laser-plasma interactions</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma-laser</topic><topic>Time-of-flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torrisi, L</creatorcontrib><creatorcontrib>Gammino, S</creatorcontrib><creatorcontrib>Mezzasalma, A.M</creatorcontrib><creatorcontrib>Badziak, J</creatorcontrib><creatorcontrib>Parys, P</creatorcontrib><creatorcontrib>Wolowski, J</creatorcontrib><creatorcontrib>Woryna, E</creatorcontrib><creatorcontrib>Krása, J</creatorcontrib><creatorcontrib>Láska, L</creatorcontrib><creatorcontrib>Pfeifer, M</creatorcontrib><creatorcontrib>Rohlena, K</creatorcontrib><creatorcontrib>Boody, F.P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torrisi, L</au><au>Gammino, S</au><au>Mezzasalma, A.M</au><au>Badziak, J</au><au>Parys, P</au><au>Wolowski, J</au><au>Woryna, E</au><au>Krása, J</au><au>Láska, L</au><au>Pfeifer, M</au><au>Rohlena, K</au><au>Boody, F.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implantation of ions produced by the use of high power iodine laser</atitle><jtitle>Applied surface science</jtitle><date>2003-07-15</date><risdate>2003</risdate><volume>217</volume><issue>1</issue><spage>319</spage><epage>331</epage><pages>319-331</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>The iodine high power Prague Asterix Laser System (PALS), emitting radiation at 438 nm wavelength (3rd-harmonic of a fundamental radiation wavelength equal to 1315 nm), was employed to irradiate in vacuum different metallic targets (Cu, Ag and Ta). The high energy (up to 230 J) short (400 ps) laser pulses produce non-equilibrium plasma expanding mainly along the normal to the target surface. Plasma contains high charge state ions, with maximum charge states of 27 +, 36 + and 49 + for Cu, Ag and Ta, respectively. Time-of-flight (TOF) measurements, performed with the use of an electrostatic ion energy analyser (IEA) placed along the target normal, indicate that the maximum recorded ion kinetic energy is higher than 900 keV for Cu and Ag ions and than 5 MeV for Ta. The laser-produced ions have been implanted into different substrates (polymers, C, Al, Si and Ti) placed at different distances and angles with respect to the target normal. In order to investigate an implantation depth, a density profile of implanted ions and an implanted dose, the samples have been analysed by using the 1.7 MeV helium Rutherford backscattering spectrometry (RBS). The energies of the ions determined with the use of the RBS analysis are in a good agreement with the ion energies measured with the use of the IEA. The results are presented and discussed giving a special attention to the potential of the ion implantation method for modifying the chemical and physical properties of the implanted materials.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0169-4332(03)00551-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2003-07, Vol.217 (1), p.319-331
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_27861915
source ScienceDirect Freedom Collection 2022-2024
subjects Exact sciences and technology
Ion implantation
Laser ablation
Laser-plasma interactions
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma applications
Plasma-laser
Time-of-flight
title Implantation of ions produced by the use of high power iodine laser
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implantation%20of%20ions%20produced%20by%20the%20use%20of%20high%20power%20iodine%20laser&rft.jtitle=Applied%20surface%20science&rft.au=Torrisi,%20L&rft.date=2003-07-15&rft.volume=217&rft.issue=1&rft.spage=319&rft.epage=331&rft.pages=319-331&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/S0169-4332(03)00551-8&rft_dat=%3Cproquest_cross%3E27861915%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-f6c2ff4c27b97d26bf5f6c6e5041b4211b79c152b5014817438bc45c5e4c9e523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27861915&rft_id=info:pmid/&rfr_iscdi=true