Loading…
Mathematical modeling of gas-phase biofilter performance
In the present paper, a new mathematical model describing the physical, chemical and biological phenomena involved in the process of contaminant removal in biofilters is developed. In addition to the contaminant, the key components of the present theoretical model are carbon dioxide and oxygen. The...
Saved in:
Published in: | Journal of chemical technology and biotechnology (1986) 2003-07, Vol.78 (7), p.834-846 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present paper, a new mathematical model describing the physical, chemical and biological phenomena involved in the process of contaminant removal in biofilters is developed. In addition to the contaminant, the key components of the present theoretical model are carbon dioxide and oxygen. The model predicts the concentration profile of the key components in the gas phase, the biofilm and the sorption liquid retained in the solid particles composing the filter bed at both steady and transient regimes. The model equations were solved numerically and comparison between theory and experiment showed that the model results for styrene and carbon dioxide concentration profiles were in very good agreement with experimental data for the biofiltration of styrene vapors at steady state. The analysis of oxygen concentration profile in the biofilm predicted by the theoretical model revealed that oxygen limitation does not occur under the operating styrene biodegradation rate in the biofilter. Copyright © 2003 Society of Chemical Industry |
---|---|
ISSN: | 0268-2575 1097-4660 |
DOI: | 10.1002/jctb.835 |