Loading…

Dispersion and mixing dynamics of complex oil-in-water emulsions in Taylor-Couette flows

The seminal study by G. I. Taylor (1923) has inspired generations of work in exploring and characterizing Taylor-Couette (TC) flow instabilities and laid the foundation for research of complex fluid systems requiring a controlled hydrodynamic environment. Here, TC flow with radial fluid injection is...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2023-05, Vol.381 (2246), p.20220128-20220128
Main Authors: Panwar, Vishal, Vargas, Cassandra N, Dutcher, Cari S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The seminal study by G. I. Taylor (1923) has inspired generations of work in exploring and characterizing Taylor-Couette (TC) flow instabilities and laid the foundation for research of complex fluid systems requiring a controlled hydrodynamic environment. Here, TC flow with radial fluid injection is used to study the mixing dynamics of complex oil-in-water emulsions. Concentrated emulsion simulating oily bilgewater is radially injected into the annulus between rotating inner and outer cylinders, and the emulsion is allowed to disperse through the flow field. The resultant mixing dynamics are investigated, and effective intermixing coefficients are calculated through measured changes in the intensity of light reflected by the emulsion droplets in fresh and salty water. The impacts of the flow field and mixing conditions on the emulsion stability are tracked via changes in droplet size distribution (DSD), and the use of emulsified droplets as tracer particles is discussed in terms of changes in the dispersive PĂ©clet, Capillary and Weber numbers. For oily wastewater systems, the formation of larger droplets is known to yield better separation during a water treatment process, and the final DSD observed here is found to be tunable based on salt concentration, observation time and mixing flow state in the TC cell. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal paper (Part 2)'.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2022.0128