Loading…
A biomechanical analysis of double-screw, double-button, and screw-button fixation constructs in patient-specific instrument–guided Latarjet procedure
The Latarjet coracoid transfer procedure reliably stabilizes the glenohumeral joint for shoulder instability. However, complications such as graft osteolysis, nonunion and fracture continue to affect patient clinical outcomes. The double-screw (SS) construct is regarded as the gold standard method o...
Saved in:
Published in: | Journal of shoulder and elbow surgery 2023-07, Vol.32 (7), p.1370-1379 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Latarjet coracoid transfer procedure reliably stabilizes the glenohumeral joint for shoulder instability. However, complications such as graft osteolysis, nonunion and fracture continue to affect patient clinical outcomes. The double-screw (SS) construct is regarded as the gold standard method of fixation. SS constructs are associated with graft osteolysis. More recently, a double-button technique (BB) has been suggested to minimize graft-related complications. However, BB constructs are associated with fibrous nonunion. To mitigate this risk, a single screw combined with a single button (SB) construct has been proposed. It is thought that this technique incorporates the strength of the SS construct and allows micromotion superiorly to mitigate stress shielding–related graft osteolysis.
The primary aim of this study was to compare the failure load of SS, BB, and SB constructs under a standardized biomechanical loading protocol. The secondary aim was to characterize the displacement of each construct throughout testing.
Computed tomography scans of 20 matched-pair cadaveric scapulae were performed. Specimens were harvested and dissected free of soft tissue. SS and BB techniques were randomly assigned to specimens for matched-pair comparison with SB trials. A patient-specific instrument (PSI)–guided Latarjet procedure was performed on each scapula. Specimens were tested using a uniaxial mechanical testing device under cyclic loading (100 cycles, 1 Hz, 200 N/s) followed by a load-to-failure protocol (0.5 mm/s). Construct failure was defined by graft fracture, screw avulsion, and/or graft displacement of more than 5 mm.
Forty scapulae from 20 fresh frozen cadavers with a mean age of 69.3 years underwent testing. On average, SS constructs failed at 537.8 N (SD 296.8), whereas BB constructs failed at 135.1 N (SD 71.4). SB constructs required a significantly greater load to fail compared with BB constructs (283.5 N, SD 162.8, P = .039). Additionally, SS (1.9 mm, IQR 0.87) had a significantly lower maximum total graft displacement during the cyclic loading protocol compared with SB (3.8 mm, IQR 2.4, P = .007) and BB (7.4 mm, IQR 3.1, P |
---|---|
ISSN: | 1058-2746 1532-6500 |
DOI: | 10.1016/j.jse.2023.02.117 |