Loading…

A fully dynamic algorithm for distributed shortest paths

We propose a fully dynamic distributed algorithm for the all-pairs shortest paths problem on general networks with positive real edge weights. If Δ σ is the number of pairs of nodes changing the distance after a single edge modification σ ( insert, delete, weight decrease, or weight increase) then t...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science 2003-03, Vol.297 (1), p.83-102
Main Authors: Cicerone, Serafino, Di Stefano, Gabriele, Frigioni, Daniele, Nanni, Umberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-84256926236f97f2eed21014067767c23b8826984b37ae5352a61d8a9d6965a13
cites cdi_FETCH-LOGICAL-c368t-84256926236f97f2eed21014067767c23b8826984b37ae5352a61d8a9d6965a13
container_end_page 102
container_issue 1
container_start_page 83
container_title Theoretical computer science
container_volume 297
creator Cicerone, Serafino
Di Stefano, Gabriele
Frigioni, Daniele
Nanni, Umberto
description We propose a fully dynamic distributed algorithm for the all-pairs shortest paths problem on general networks with positive real edge weights. If Δ σ is the number of pairs of nodes changing the distance after a single edge modification σ ( insert, delete, weight decrease, or weight increase) then the message complexity of the proposed algorithm is O( nΔ σ ) in the worst case, where n is the number of nodes of the network. If Δ σ = o(n 2) , this is better than recomputing everything from scratch after each edge modification. Up to now only a result of Ramarao and Venkatesan was known, stating that the problem of updating shortest paths in a dynamic distributed environment is as hard as that of computing shortest paths.
doi_str_mv 10.1016/S0304-3975(02)00619-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27870964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397502006199</els_id><sourcerecordid>27870964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-84256926236f97f2eed21014067767c23b8826984b37ae5352a61d8a9d6965a13</originalsourceid><addsrcrecordid>eNqFkElLBDEQhYMoOI7-BKEvih5as3RXkpMMgxsMeFDPIZOknUgvY5IW-t_bs6BH61KX79V79RA6J_iGYAK3r5jhImeSl1eYXmMMRObyAE2I4DKnVBaHaPKLHKOTGD_xOCWHCRKzrOrresjs0OrGm0zXH13wadVkVRcy62MKftknZ7O46kJyMWVrnVbxFB1Vuo7ubL-n6P3h_m3-lC9eHp_ns0VuGIiUi4KWIClQBpXkFXXO0jF0gYFz4IaypRAUpCiWjGtXspJqIFZoaUFCqQmbosvd3XXovvrRXjU-GlfXunVdHxXlgmMJxQiWO9CELsbgKrUOvtFhUASrTU9q25PalKAwVduelBx1F3sDHY2uq6Bb4-OfuOCAQWyC3O04N3777V1Q0XjXGmd9cCYp2_l_nH4AAS56gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27870964</pqid></control><display><type>article</type><title>A fully dynamic algorithm for distributed shortest paths</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Cicerone, Serafino ; Di Stefano, Gabriele ; Frigioni, Daniele ; Nanni, Umberto</creator><creatorcontrib>Cicerone, Serafino ; Di Stefano, Gabriele ; Frigioni, Daniele ; Nanni, Umberto</creatorcontrib><description>We propose a fully dynamic distributed algorithm for the all-pairs shortest paths problem on general networks with positive real edge weights. If Δ σ is the number of pairs of nodes changing the distance after a single edge modification σ ( insert, delete, weight decrease, or weight increase) then the message complexity of the proposed algorithm is O( nΔ σ ) in the worst case, where n is the number of nodes of the network. If Δ σ = o(n 2) , this is better than recomputing everything from scratch after each edge modification. Up to now only a result of Ramarao and Venkatesan was known, stating that the problem of updating shortest paths in a dynamic distributed environment is as hard as that of computing shortest paths.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(02)00619-9</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; General algebraic systems ; Graph theory ; Mathematical programming ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2003-03, Vol.297 (1), p.83-102</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-84256926236f97f2eed21014067767c23b8826984b37ae5352a61d8a9d6965a13</citedby><cites>FETCH-LOGICAL-c368t-84256926236f97f2eed21014067767c23b8826984b37ae5352a61d8a9d6965a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14760681$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cicerone, Serafino</creatorcontrib><creatorcontrib>Di Stefano, Gabriele</creatorcontrib><creatorcontrib>Frigioni, Daniele</creatorcontrib><creatorcontrib>Nanni, Umberto</creatorcontrib><title>A fully dynamic algorithm for distributed shortest paths</title><title>Theoretical computer science</title><description>We propose a fully dynamic distributed algorithm for the all-pairs shortest paths problem on general networks with positive real edge weights. If Δ σ is the number of pairs of nodes changing the distance after a single edge modification σ ( insert, delete, weight decrease, or weight increase) then the message complexity of the proposed algorithm is O( nΔ σ ) in the worst case, where n is the number of nodes of the network. If Δ σ = o(n 2) , this is better than recomputing everything from scratch after each edge modification. Up to now only a result of Ramarao and Venkatesan was known, stating that the problem of updating shortest paths in a dynamic distributed environment is as hard as that of computing shortest paths.</description><subject>Algebra</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>General algebraic systems</subject><subject>Graph theory</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkElLBDEQhYMoOI7-BKEvih5as3RXkpMMgxsMeFDPIZOknUgvY5IW-t_bs6BH61KX79V79RA6J_iGYAK3r5jhImeSl1eYXmMMRObyAE2I4DKnVBaHaPKLHKOTGD_xOCWHCRKzrOrresjs0OrGm0zXH13wadVkVRcy62MKftknZ7O46kJyMWVrnVbxFB1Vuo7ubL-n6P3h_m3-lC9eHp_ns0VuGIiUi4KWIClQBpXkFXXO0jF0gYFz4IaypRAUpCiWjGtXspJqIFZoaUFCqQmbosvd3XXovvrRXjU-GlfXunVdHxXlgmMJxQiWO9CELsbgKrUOvtFhUASrTU9q25PalKAwVduelBx1F3sDHY2uq6Bb4-OfuOCAQWyC3O04N3777V1Q0XjXGmd9cCYp2_l_nH4AAS56gQ</recordid><startdate>20030317</startdate><enddate>20030317</enddate><creator>Cicerone, Serafino</creator><creator>Di Stefano, Gabriele</creator><creator>Frigioni, Daniele</creator><creator>Nanni, Umberto</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030317</creationdate><title>A fully dynamic algorithm for distributed shortest paths</title><author>Cicerone, Serafino ; Di Stefano, Gabriele ; Frigioni, Daniele ; Nanni, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-84256926236f97f2eed21014067767c23b8826984b37ae5352a61d8a9d6965a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebra</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>General algebraic systems</topic><topic>Graph theory</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cicerone, Serafino</creatorcontrib><creatorcontrib>Di Stefano, Gabriele</creatorcontrib><creatorcontrib>Frigioni, Daniele</creatorcontrib><creatorcontrib>Nanni, Umberto</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cicerone, Serafino</au><au>Di Stefano, Gabriele</au><au>Frigioni, Daniele</au><au>Nanni, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fully dynamic algorithm for distributed shortest paths</atitle><jtitle>Theoretical computer science</jtitle><date>2003-03-17</date><risdate>2003</risdate><volume>297</volume><issue>1</issue><spage>83</spage><epage>102</epage><pages>83-102</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>We propose a fully dynamic distributed algorithm for the all-pairs shortest paths problem on general networks with positive real edge weights. If Δ σ is the number of pairs of nodes changing the distance after a single edge modification σ ( insert, delete, weight decrease, or weight increase) then the message complexity of the proposed algorithm is O( nΔ σ ) in the worst case, where n is the number of nodes of the network. If Δ σ = o(n 2) , this is better than recomputing everything from scratch after each edge modification. Up to now only a result of Ramarao and Venkatesan was known, stating that the problem of updating shortest paths in a dynamic distributed environment is as hard as that of computing shortest paths.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(02)00619-9</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2003-03, Vol.297 (1), p.83-102
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_27870964
source ScienceDirect Freedom Collection 2022-2024
subjects Algebra
Algorithmics. Computability. Computer arithmetics
Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
General algebraic systems
Graph theory
Mathematical programming
Mathematics
Operational research and scientific management
Operational research. Management science
Sciences and techniques of general use
Theoretical computing
title A fully dynamic algorithm for distributed shortest paths
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fully%20dynamic%20algorithm%20for%20distributed%20shortest%20paths&rft.jtitle=Theoretical%20computer%20science&rft.au=Cicerone,%20Serafino&rft.date=2003-03-17&rft.volume=297&rft.issue=1&rft.spage=83&rft.epage=102&rft.pages=83-102&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/S0304-3975(02)00619-9&rft_dat=%3Cproquest_cross%3E27870964%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-84256926236f97f2eed21014067767c23b8826984b37ae5352a61d8a9d6965a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27870964&rft_id=info:pmid/&rfr_iscdi=true