Loading…

Fault detection during process transitions: a model-based approach

Startup, shutdown and other transitions are integral to batch and continuous process operations. Operators usually execute transitions in manual mode. Processes are therefore prone to operator errors in addition to process faults during transitions. If undetected, such abnormalities can lead to proc...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2003, Vol.58 (2), p.309-325
Main Authors: Bhagwat, Anshuman, Srinivasan, Rajagopalan, Krishnaswamy, P.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Startup, shutdown and other transitions are integral to batch and continuous process operations. Operators usually execute transitions in manual mode. Processes are therefore prone to operator errors in addition to process faults during transitions. If undetected, such abnormalities can lead to process downtime and in the worst case, accidents. Although essential, fault detection during transitions has received little attention in literature. This paper presents a novel multiple filters and observers based fault detection scheme using (i) a nonlinear process model, and (ii) knowledge of the standard operating procedure for executing the transition. Extended Kalman filters, Kalman filters, and open-loop observers are used to estimate process states during the transition and generate residuals. These residuals indicate deviations from normal operation due to process faults and operator errors. The model-based scheme has been implemented in Matlab/Simulink and found to successfully detect faults during the startup of an experimental pH neutralization CSTR.
ISSN:0009-2509
1873-4405
DOI:10.1016/S0009-2509(02)00520-1