Loading…
Stochastic effects in bacterial communication mediated by extracellular vesicles
Quorum sensing (QS) allows bacterial cells to sense changes in local cell density and, hence, to regulate multicellular processes, including biofilm formation, regulation of virulence, and horizontal gene transfer. While, traditionally, QS was thought to involve the exchange of extracellular signal...
Saved in:
Published in: | Physical review. E 2023-02, Vol.107 (2-1), p.024409-024409, Article 024409 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quorum sensing (QS) allows bacterial cells to sense changes in local cell density and, hence, to regulate multicellular processes, including biofilm formation, regulation of virulence, and horizontal gene transfer. While, traditionally, QS was thought to involve the exchange of extracellular signal molecules free in solution, recent experiments have shown that for some bacterial systems a substantial fraction of signal molecules are packaged and delivered in extracellular vesicles. How the packaging of signal molecules in extracellular vesicles influences the ability of cells to communicate and coordinate multicellular behaviors remains largely unknown. We present here a stochastic reaction-diffusion model of QS that accounts for the exchange of both freely diffusing and vesicle-associated signal molecules. We find that the delivery of signal molecules via extracellular vesicles amplifies local fluctuations in the signal concentration, which can strongly affect the dynamics and spatial range of bacterial communication. For systems with multiple bacterial colonies, extracellular vesicles provide an alternate pathway for signal transport between colonies, and may be crucial for long-distance signal exchange in environments with strong degradation of free signal molecules. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.107.024409 |