Loading…

Euler fluid in two dimensions: Statistical approach

We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a c...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2023-02, Vol.107 (2-1), p.024115-024115, Article 024115
Main Authors: Farias, Calvin A F, Pakter, Renato, Levin, Yan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663
cites cdi_FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663
container_end_page 024115
container_issue 2-1
container_start_page 024115
container_title Physical review. E
container_volume 107
creator Farias, Calvin A F
Pakter, Renato
Levin, Yan
description We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices. If the vortex dynamics is mixing, the final equilibrium state of the fluid should correspond to the maximum of Boltzmann entropy, with the constraint that all the Casimir invariants of the fluid must be preserved. This is the fundamental assumption of Lynden-Bell's theory of collisionless relaxation. In this paper, we will present a Monte Carlo method which allows us to find the maximum entropy state of the fluid starting from an arbitrary initial condition. We will then compare this prediction with the results of molecular dynamics simulation and demonstrate that the final state to which the fluid evolves is, actually, very different from that corresponding to the maximum of entropy. This indicates that the mixing assumption is not correct. We will then present a different approach based on core-halo distribution which allows us to accurately predict the final state to which the fluid will relax, starting from an arbitrary initial condition.
doi_str_mv 10.1103/PhysRevE.107.024115
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2788798372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788798372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhEVpaUKaX1AoPvZid1eKLKu3EtIHBFr6OAvFXhEVP1LLbsm_r0Mepx2GmR34GLtGSBBB3L2tt-GdfhcJgkqAzxDlGRvzmYIYQIrzk57JEZuG8A0AmIJWyC_ZSKRacAnZmIlFX1IbubL3ReTrqPtrosJXVAff1OE--uhs50Pnc1tGdrNpG5uvr9iFs2Wg6eFO2Nfj4nP-HC9fn17mD8s4FyC7mHhKiq8AnbQpalmkqSDtZEF250gChQ6VRplb5zTHFWUOROZ0jgBDeMJu93-H2Z-eQmcqH3IqS1tT0wfDVZYpnQnFh6jYR_O2CaElZzatr2y7NQhmB8wcgQ2GMntgQ-vmMNCvKipOnSMe8Q8O0GcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788798372</pqid></control><display><type>article</type><title>Euler fluid in two dimensions: Statistical approach</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Farias, Calvin A F ; Pakter, Renato ; Levin, Yan</creator><creatorcontrib>Farias, Calvin A F ; Pakter, Renato ; Levin, Yan</creatorcontrib><description>We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices. If the vortex dynamics is mixing, the final equilibrium state of the fluid should correspond to the maximum of Boltzmann entropy, with the constraint that all the Casimir invariants of the fluid must be preserved. This is the fundamental assumption of Lynden-Bell's theory of collisionless relaxation. In this paper, we will present a Monte Carlo method which allows us to find the maximum entropy state of the fluid starting from an arbitrary initial condition. We will then compare this prediction with the results of molecular dynamics simulation and demonstrate that the final state to which the fluid evolves is, actually, very different from that corresponding to the maximum of entropy. This indicates that the mixing assumption is not correct. We will then present a different approach based on core-halo distribution which allows us to accurately predict the final state to which the fluid will relax, starting from an arbitrary initial condition.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.107.024115</identifier><identifier>PMID: 36932508</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2023-02, Vol.107 (2-1), p.024115-024115, Article 024115</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663</citedby><cites>FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663</cites><orcidid>0000-0002-0636-7300 ; 0000-0001-6532-9307 ; 0000-0002-7863-9600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36932508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farias, Calvin A F</creatorcontrib><creatorcontrib>Pakter, Renato</creatorcontrib><creatorcontrib>Levin, Yan</creatorcontrib><title>Euler fluid in two dimensions: Statistical approach</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices. If the vortex dynamics is mixing, the final equilibrium state of the fluid should correspond to the maximum of Boltzmann entropy, with the constraint that all the Casimir invariants of the fluid must be preserved. This is the fundamental assumption of Lynden-Bell's theory of collisionless relaxation. In this paper, we will present a Monte Carlo method which allows us to find the maximum entropy state of the fluid starting from an arbitrary initial condition. We will then compare this prediction with the results of molecular dynamics simulation and demonstrate that the final state to which the fluid evolves is, actually, very different from that corresponding to the maximum of entropy. This indicates that the mixing assumption is not correct. We will then present a different approach based on core-halo distribution which allows us to accurately predict the final state to which the fluid will relax, starting from an arbitrary initial condition.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhEVpaUKaX1AoPvZid1eKLKu3EtIHBFr6OAvFXhEVP1LLbsm_r0Mepx2GmR34GLtGSBBB3L2tt-GdfhcJgkqAzxDlGRvzmYIYQIrzk57JEZuG8A0AmIJWyC_ZSKRacAnZmIlFX1IbubL3ReTrqPtrosJXVAff1OE--uhs50Pnc1tGdrNpG5uvr9iFs2Wg6eFO2Nfj4nP-HC9fn17mD8s4FyC7mHhKiq8AnbQpalmkqSDtZEF250gChQ6VRplb5zTHFWUOROZ0jgBDeMJu93-H2Z-eQmcqH3IqS1tT0wfDVZYpnQnFh6jYR_O2CaElZzatr2y7NQhmB8wcgQ2GMntgQ-vmMNCvKipOnSMe8Q8O0GcU</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Farias, Calvin A F</creator><creator>Pakter, Renato</creator><creator>Levin, Yan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0636-7300</orcidid><orcidid>https://orcid.org/0000-0001-6532-9307</orcidid><orcidid>https://orcid.org/0000-0002-7863-9600</orcidid></search><sort><creationdate>20230201</creationdate><title>Euler fluid in two dimensions: Statistical approach</title><author>Farias, Calvin A F ; Pakter, Renato ; Levin, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farias, Calvin A F</creatorcontrib><creatorcontrib>Pakter, Renato</creatorcontrib><creatorcontrib>Levin, Yan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farias, Calvin A F</au><au>Pakter, Renato</au><au>Levin, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Euler fluid in two dimensions: Statistical approach</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>107</volume><issue>2-1</issue><spage>024115</spage><epage>024115</epage><pages>024115-024115</pages><artnum>024115</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices. If the vortex dynamics is mixing, the final equilibrium state of the fluid should correspond to the maximum of Boltzmann entropy, with the constraint that all the Casimir invariants of the fluid must be preserved. This is the fundamental assumption of Lynden-Bell's theory of collisionless relaxation. In this paper, we will present a Monte Carlo method which allows us to find the maximum entropy state of the fluid starting from an arbitrary initial condition. We will then compare this prediction with the results of molecular dynamics simulation and demonstrate that the final state to which the fluid evolves is, actually, very different from that corresponding to the maximum of entropy. This indicates that the mixing assumption is not correct. We will then present a different approach based on core-halo distribution which allows us to accurately predict the final state to which the fluid will relax, starting from an arbitrary initial condition.</abstract><cop>United States</cop><pmid>36932508</pmid><doi>10.1103/PhysRevE.107.024115</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0636-7300</orcidid><orcidid>https://orcid.org/0000-0001-6532-9307</orcidid><orcidid>https://orcid.org/0000-0002-7863-9600</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2023-02, Vol.107 (2-1), p.024115-024115, Article 024115
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2788798372
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Euler fluid in two dimensions: Statistical approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Euler%20fluid%20in%20two%20dimensions:%20Statistical%20approach&rft.jtitle=Physical%20review.%20E&rft.au=Farias,%20Calvin%20A%20F&rft.date=2023-02-01&rft.volume=107&rft.issue=2-1&rft.spage=024115&rft.epage=024115&rft.pages=024115-024115&rft.artnum=024115&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.107.024115&rft_dat=%3Cproquest_cross%3E2788798372%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788798372&rft_id=info:pmid/36932508&rfr_iscdi=true