Loading…
Euler fluid in two dimensions: Statistical approach
We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a c...
Saved in:
Published in: | Physical review. E 2023-02, Vol.107 (2-1), p.024115-024115, Article 024115 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663 |
---|---|
cites | cdi_FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663 |
container_end_page | 024115 |
container_issue | 2-1 |
container_start_page | 024115 |
container_title | Physical review. E |
container_volume | 107 |
creator | Farias, Calvin A F Pakter, Renato Levin, Yan |
description | We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices. If the vortex dynamics is mixing, the final equilibrium state of the fluid should correspond to the maximum of Boltzmann entropy, with the constraint that all the Casimir invariants of the fluid must be preserved. This is the fundamental assumption of Lynden-Bell's theory of collisionless relaxation. In this paper, we will present a Monte Carlo method which allows us to find the maximum entropy state of the fluid starting from an arbitrary initial condition. We will then compare this prediction with the results of molecular dynamics simulation and demonstrate that the final state to which the fluid evolves is, actually, very different from that corresponding to the maximum of entropy. This indicates that the mixing assumption is not correct. We will then present a different approach based on core-halo distribution which allows us to accurately predict the final state to which the fluid will relax, starting from an arbitrary initial condition. |
doi_str_mv | 10.1103/PhysRevE.107.024115 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2788798372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788798372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhEVpaUKaX1AoPvZid1eKLKu3EtIHBFr6OAvFXhEVP1LLbsm_r0Mepx2GmR34GLtGSBBB3L2tt-GdfhcJgkqAzxDlGRvzmYIYQIrzk57JEZuG8A0AmIJWyC_ZSKRacAnZmIlFX1IbubL3ReTrqPtrosJXVAff1OE--uhs50Pnc1tGdrNpG5uvr9iFs2Wg6eFO2Nfj4nP-HC9fn17mD8s4FyC7mHhKiq8AnbQpalmkqSDtZEF250gChQ6VRplb5zTHFWUOROZ0jgBDeMJu93-H2Z-eQmcqH3IqS1tT0wfDVZYpnQnFh6jYR_O2CaElZzatr2y7NQhmB8wcgQ2GMntgQ-vmMNCvKipOnSMe8Q8O0GcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788798372</pqid></control><display><type>article</type><title>Euler fluid in two dimensions: Statistical approach</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Farias, Calvin A F ; Pakter, Renato ; Levin, Yan</creator><creatorcontrib>Farias, Calvin A F ; Pakter, Renato ; Levin, Yan</creatorcontrib><description>We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices. If the vortex dynamics is mixing, the final equilibrium state of the fluid should correspond to the maximum of Boltzmann entropy, with the constraint that all the Casimir invariants of the fluid must be preserved. This is the fundamental assumption of Lynden-Bell's theory of collisionless relaxation. In this paper, we will present a Monte Carlo method which allows us to find the maximum entropy state of the fluid starting from an arbitrary initial condition. We will then compare this prediction with the results of molecular dynamics simulation and demonstrate that the final state to which the fluid evolves is, actually, very different from that corresponding to the maximum of entropy. This indicates that the mixing assumption is not correct. We will then present a different approach based on core-halo distribution which allows us to accurately predict the final state to which the fluid will relax, starting from an arbitrary initial condition.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.107.024115</identifier><identifier>PMID: 36932508</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2023-02, Vol.107 (2-1), p.024115-024115, Article 024115</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663</citedby><cites>FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663</cites><orcidid>0000-0002-0636-7300 ; 0000-0001-6532-9307 ; 0000-0002-7863-9600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36932508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farias, Calvin A F</creatorcontrib><creatorcontrib>Pakter, Renato</creatorcontrib><creatorcontrib>Levin, Yan</creatorcontrib><title>Euler fluid in two dimensions: Statistical approach</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices. If the vortex dynamics is mixing, the final equilibrium state of the fluid should correspond to the maximum of Boltzmann entropy, with the constraint that all the Casimir invariants of the fluid must be preserved. This is the fundamental assumption of Lynden-Bell's theory of collisionless relaxation. In this paper, we will present a Monte Carlo method which allows us to find the maximum entropy state of the fluid starting from an arbitrary initial condition. We will then compare this prediction with the results of molecular dynamics simulation and demonstrate that the final state to which the fluid evolves is, actually, very different from that corresponding to the maximum of entropy. This indicates that the mixing assumption is not correct. We will then present a different approach based on core-halo distribution which allows us to accurately predict the final state to which the fluid will relax, starting from an arbitrary initial condition.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhEVpaUKaX1AoPvZid1eKLKu3EtIHBFr6OAvFXhEVP1LLbsm_r0Mepx2GmR34GLtGSBBB3L2tt-GdfhcJgkqAzxDlGRvzmYIYQIrzk57JEZuG8A0AmIJWyC_ZSKRacAnZmIlFX1IbubL3ReTrqPtrosJXVAff1OE--uhs50Pnc1tGdrNpG5uvr9iFs2Wg6eFO2Nfj4nP-HC9fn17mD8s4FyC7mHhKiq8AnbQpalmkqSDtZEF250gChQ6VRplb5zTHFWUOROZ0jgBDeMJu93-H2Z-eQmcqH3IqS1tT0wfDVZYpnQnFh6jYR_O2CaElZzatr2y7NQhmB8wcgQ2GMntgQ-vmMNCvKipOnSMe8Q8O0GcU</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Farias, Calvin A F</creator><creator>Pakter, Renato</creator><creator>Levin, Yan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0636-7300</orcidid><orcidid>https://orcid.org/0000-0001-6532-9307</orcidid><orcidid>https://orcid.org/0000-0002-7863-9600</orcidid></search><sort><creationdate>20230201</creationdate><title>Euler fluid in two dimensions: Statistical approach</title><author>Farias, Calvin A F ; Pakter, Renato ; Levin, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farias, Calvin A F</creatorcontrib><creatorcontrib>Pakter, Renato</creatorcontrib><creatorcontrib>Levin, Yan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farias, Calvin A F</au><au>Pakter, Renato</au><au>Levin, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Euler fluid in two dimensions: Statistical approach</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>107</volume><issue>2-1</issue><spage>024115</spage><epage>024115</epage><pages>024115-024115</pages><artnum>024115</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices. If the vortex dynamics is mixing, the final equilibrium state of the fluid should correspond to the maximum of Boltzmann entropy, with the constraint that all the Casimir invariants of the fluid must be preserved. This is the fundamental assumption of Lynden-Bell's theory of collisionless relaxation. In this paper, we will present a Monte Carlo method which allows us to find the maximum entropy state of the fluid starting from an arbitrary initial condition. We will then compare this prediction with the results of molecular dynamics simulation and demonstrate that the final state to which the fluid evolves is, actually, very different from that corresponding to the maximum of entropy. This indicates that the mixing assumption is not correct. We will then present a different approach based on core-halo distribution which allows us to accurately predict the final state to which the fluid will relax, starting from an arbitrary initial condition.</abstract><cop>United States</cop><pmid>36932508</pmid><doi>10.1103/PhysRevE.107.024115</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0636-7300</orcidid><orcidid>https://orcid.org/0000-0001-6532-9307</orcidid><orcidid>https://orcid.org/0000-0002-7863-9600</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2023-02, Vol.107 (2-1), p.024115-024115, Article 024115 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2788798372 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Euler fluid in two dimensions: Statistical approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Euler%20fluid%20in%20two%20dimensions:%20Statistical%20approach&rft.jtitle=Physical%20review.%20E&rft.au=Farias,%20Calvin%20A%20F&rft.date=2023-02-01&rft.volume=107&rft.issue=2-1&rft.spage=024115&rft.epage=024115&rft.pages=024115-024115&rft.artnum=024115&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.107.024115&rft_dat=%3Cproquest_cross%3E2788798372%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-e26e72b01f5a6195d663e9f5deaf5a65e071f17915caff921be8f038f9c100663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788798372&rft_id=info:pmid/36932508&rfr_iscdi=true |