Loading…

Non-linear constitutive relations for magnetostrictive materials

In this paper, non-linear deformation behavior of magnetostrictive materials is studied and three magnetoelastic coupling constitutive models are developed. The standard square (SS) constitutive model is developed by means of truncating the polynomial expansion of the Gibbs free energy. The hyperbol...

Full description

Saved in:
Bibliographic Details
Published in:International journal of non-linear mechanics 2003-10, Vol.38 (7), p.1053-1065
Main Authors: Wan, Yongping, Fang, Daining, Hwang, Keh-Chih
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, non-linear deformation behavior of magnetostrictive materials is studied and three magnetoelastic coupling constitutive models are developed. The standard square (SS) constitutive model is developed by means of truncating the polynomial expansion of the Gibbs free energy. The hyperbolic tangent (HT) constitutive equations, which involve a hyperbolic tangent magnetic-field dependence, are proposed to model the magnetic-field-induced strain saturation of magnetostrictive materials in the region of intense magnetic fields. A new model based on density of domain switching (DDS) is established in terms of the basic truth that magnetic domain switching underlies magnetostrictive deformation. In this model, it is assumed that the relation between density of domain switching, defined by the quantity of magnetic domains switched by per unit magnetic field and magnetic field can be described by a density function with normal distribution. The moduli in these constitutive models can be determined by a material function that is proposed to describe the dependence of the peak piezomagnetic coefficient on the compressive pre-stress for one-dimensional cases based on the experimental results published. The accuracy of the non-linear constitutive relations is evaluated by comparing the theoretical values with experimental results of a Terfenol-D rod operated under both compressive pre-stress and bias magnetic field. Results indicate that the SS constitutive equations can accurately predict the experimental results under a low or moderate magnetic field while the HT model can, to some extent, reflect the trend of saturation of magnetostrictive strain under a high magnetic field. The model based on DDS, which is more effective in simulating the experimental curves, can capture the main characteristics of the mechanism of magnetoelastic coupling deformation of a Terfenol-D rod, such as the notable dependence of magnetoelastic response on external stress and the saturation of magnetostrictive strain under intense magnetic fields. In addition, the SS constitutive relation for a general three-dimensional problem is discussed and an approach to characterize the modulus tensors is proposed.
ISSN:0020-7462
1878-5638
DOI:10.1016/S0020-7462(02)00052-5