Loading…
Interfacial Engineering Boosts Highly Reversible Zinc Metal for Aqueous Zinc-Ion Batteries
Zinc metal is emerging as the promising anode for aqueous Zn-ion batteries. However, corrosion and undesirable Zn dendrite growth limit their practical application in the large-scale energy storage area. Herein, a mountain–valley micro/nanostructure is successfully fabricated on the surface of the Z...
Saved in:
Published in: | ACS applied materials & interfaces 2023-04, Vol.15 (13), p.16584-16592 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zinc metal is emerging as the promising anode for aqueous Zn-ion batteries. However, corrosion and undesirable Zn dendrite growth limit their practical application in the large-scale energy storage area. Herein, a mountain–valley micro/nanostructure is successfully fabricated on the surface of the Zn anode via a femtosecond-laser filament texturing (FsLFT) technique. Beneficial from the large surface area and spontaneously generated ZnO coating layer, the FsLFT-Zn electrode demonstrates a slow corrosion rate with a current density of 0.62 mA cm–2 and a stable cycle life over 3000 h under 1 mA cm–2, superior to the original Zn anode. Simulation of the electric fields reveals that the enlarged surface area is responsible for the outstanding performance of the FsLFT-Zn electrode. This study not only proposes a novel strategy to suppress dendrite growth toward highly stable AZIBs but also opens a new avenue to solve similar issues in other metal batteries. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c20075 |