Loading…

Interfacial Engineering Boosts Highly Reversible Zinc Metal for Aqueous Zinc-Ion Batteries

Zinc metal is emerging as the promising anode for aqueous Zn-ion batteries. However, corrosion and undesirable Zn dendrite growth limit their practical application in the large-scale energy storage area. Herein, a mountain–valley micro/nanostructure is successfully fabricated on the surface of the Z...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-04, Vol.15 (13), p.16584-16592
Main Authors: Yao, Danwen, Yu, Dongxu, Yao, Shiyu, Lu, Ziheng, Li, Guoxiao, Xu, Huailiang, Du, Fei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-2425c4e315c2dbba94fd8e68d751bff83c801d46550b8a1e6ab49a5820beb7813
cites cdi_FETCH-LOGICAL-a330t-2425c4e315c2dbba94fd8e68d751bff83c801d46550b8a1e6ab49a5820beb7813
container_end_page 16592
container_issue 13
container_start_page 16584
container_title ACS applied materials & interfaces
container_volume 15
creator Yao, Danwen
Yu, Dongxu
Yao, Shiyu
Lu, Ziheng
Li, Guoxiao
Xu, Huailiang
Du, Fei
description Zinc metal is emerging as the promising anode for aqueous Zn-ion batteries. However, corrosion and undesirable Zn dendrite growth limit their practical application in the large-scale energy storage area. Herein, a mountain–valley micro/nanostructure is successfully fabricated on the surface of the Zn anode via a femtosecond-laser filament texturing (FsLFT) technique. Beneficial from the large surface area and spontaneously generated ZnO coating layer, the FsLFT-Zn electrode demonstrates a slow corrosion rate with a current density of 0.62 mA cm–2 and a stable cycle life over 3000 h under 1 mA cm–2, superior to the original Zn anode. Simulation of the electric fields reveals that the enlarged surface area is responsible for the outstanding performance of the FsLFT-Zn electrode. This study not only proposes a novel strategy to suppress dendrite growth toward highly stable AZIBs but also opens a new avenue to solve similar issues in other metal batteries.
doi_str_mv 10.1021/acsami.2c20075
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2790052320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790052320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-2425c4e315c2dbba94fd8e68d751bff83c801d46550b8a1e6ab49a5820beb7813</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk6vHqVHETqTNGnT4zamG0wE0csuJUlfZ0Z_zKQV9t-b2bmbp_d4fL5f3veL0C3BY4IpeZTaycqMqaYYJ_wMDUnKWCgop-ennbEBunJui3EcUcwv0SCKU5bEiRii9bJuwRZSG1kG83pjagBr6k0wbRrXumBhNp_lPniDb7DOqBKCtal18AKt54vGBpOvDprO_Z7DZVMHU9l6RwPuGl0UsnRwc5wj9PE0f58twtXr83I2WYUyinAbUka5ZhARrmmulExZkQuIRZ5woopCRFpgkrOYc6yEJBBLxVLJBcUKVCJINEL3ve_ONv4Z12aVcRrKUtaHzzKapBhz6qN7dNyj2jbOWSiynTWVtPuM4OzQZ9b3mR379IK7o3enKshP-F-BHnjoAS_Mtk1nax_1P7cfILeAHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790052320</pqid></control><display><type>article</type><title>Interfacial Engineering Boosts Highly Reversible Zinc Metal for Aqueous Zinc-Ion Batteries</title><source>Access via American Chemical Society</source><creator>Yao, Danwen ; Yu, Dongxu ; Yao, Shiyu ; Lu, Ziheng ; Li, Guoxiao ; Xu, Huailiang ; Du, Fei</creator><creatorcontrib>Yao, Danwen ; Yu, Dongxu ; Yao, Shiyu ; Lu, Ziheng ; Li, Guoxiao ; Xu, Huailiang ; Du, Fei</creatorcontrib><description>Zinc metal is emerging as the promising anode for aqueous Zn-ion batteries. However, corrosion and undesirable Zn dendrite growth limit their practical application in the large-scale energy storage area. Herein, a mountain–valley micro/nanostructure is successfully fabricated on the surface of the Zn anode via a femtosecond-laser filament texturing (FsLFT) technique. Beneficial from the large surface area and spontaneously generated ZnO coating layer, the FsLFT-Zn electrode demonstrates a slow corrosion rate with a current density of 0.62 mA cm–2 and a stable cycle life over 3000 h under 1 mA cm–2, superior to the original Zn anode. Simulation of the electric fields reveals that the enlarged surface area is responsible for the outstanding performance of the FsLFT-Zn electrode. This study not only proposes a novel strategy to suppress dendrite growth toward highly stable AZIBs but also opens a new avenue to solve similar issues in other metal batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c20075</identifier><identifier>PMID: 36947678</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-04, Vol.15 (13), p.16584-16592</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-2425c4e315c2dbba94fd8e68d751bff83c801d46550b8a1e6ab49a5820beb7813</citedby><cites>FETCH-LOGICAL-a330t-2425c4e315c2dbba94fd8e68d751bff83c801d46550b8a1e6ab49a5820beb7813</cites><orcidid>0000-0002-6988-898X ; 0000-0001-6413-0689 ; 0000-0001-8469-7041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36947678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Danwen</creatorcontrib><creatorcontrib>Yu, Dongxu</creatorcontrib><creatorcontrib>Yao, Shiyu</creatorcontrib><creatorcontrib>Lu, Ziheng</creatorcontrib><creatorcontrib>Li, Guoxiao</creatorcontrib><creatorcontrib>Xu, Huailiang</creatorcontrib><creatorcontrib>Du, Fei</creatorcontrib><title>Interfacial Engineering Boosts Highly Reversible Zinc Metal for Aqueous Zinc-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Zinc metal is emerging as the promising anode for aqueous Zn-ion batteries. However, corrosion and undesirable Zn dendrite growth limit their practical application in the large-scale energy storage area. Herein, a mountain–valley micro/nanostructure is successfully fabricated on the surface of the Zn anode via a femtosecond-laser filament texturing (FsLFT) technique. Beneficial from the large surface area and spontaneously generated ZnO coating layer, the FsLFT-Zn electrode demonstrates a slow corrosion rate with a current density of 0.62 mA cm–2 and a stable cycle life over 3000 h under 1 mA cm–2, superior to the original Zn anode. Simulation of the electric fields reveals that the enlarged surface area is responsible for the outstanding performance of the FsLFT-Zn electrode. This study not only proposes a novel strategy to suppress dendrite growth toward highly stable AZIBs but also opens a new avenue to solve similar issues in other metal batteries.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk6vHqVHETqTNGnT4zamG0wE0csuJUlfZ0Z_zKQV9t-b2bmbp_d4fL5f3veL0C3BY4IpeZTaycqMqaYYJ_wMDUnKWCgop-ennbEBunJui3EcUcwv0SCKU5bEiRii9bJuwRZSG1kG83pjagBr6k0wbRrXumBhNp_lPniDb7DOqBKCtal18AKt54vGBpOvDprO_Z7DZVMHU9l6RwPuGl0UsnRwc5wj9PE0f58twtXr83I2WYUyinAbUka5ZhARrmmulExZkQuIRZ5woopCRFpgkrOYc6yEJBBLxVLJBcUKVCJINEL3ve_ONv4Z12aVcRrKUtaHzzKapBhz6qN7dNyj2jbOWSiynTWVtPuM4OzQZ9b3mR379IK7o3enKshP-F-BHnjoAS_Mtk1nax_1P7cfILeAHA</recordid><startdate>20230405</startdate><enddate>20230405</enddate><creator>Yao, Danwen</creator><creator>Yu, Dongxu</creator><creator>Yao, Shiyu</creator><creator>Lu, Ziheng</creator><creator>Li, Guoxiao</creator><creator>Xu, Huailiang</creator><creator>Du, Fei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6988-898X</orcidid><orcidid>https://orcid.org/0000-0001-6413-0689</orcidid><orcidid>https://orcid.org/0000-0001-8469-7041</orcidid></search><sort><creationdate>20230405</creationdate><title>Interfacial Engineering Boosts Highly Reversible Zinc Metal for Aqueous Zinc-Ion Batteries</title><author>Yao, Danwen ; Yu, Dongxu ; Yao, Shiyu ; Lu, Ziheng ; Li, Guoxiao ; Xu, Huailiang ; Du, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-2425c4e315c2dbba94fd8e68d751bff83c801d46550b8a1e6ab49a5820beb7813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Danwen</creatorcontrib><creatorcontrib>Yu, Dongxu</creatorcontrib><creatorcontrib>Yao, Shiyu</creatorcontrib><creatorcontrib>Lu, Ziheng</creatorcontrib><creatorcontrib>Li, Guoxiao</creatorcontrib><creatorcontrib>Xu, Huailiang</creatorcontrib><creatorcontrib>Du, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Danwen</au><au>Yu, Dongxu</au><au>Yao, Shiyu</au><au>Lu, Ziheng</au><au>Li, Guoxiao</au><au>Xu, Huailiang</au><au>Du, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Engineering Boosts Highly Reversible Zinc Metal for Aqueous Zinc-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-04-05</date><risdate>2023</risdate><volume>15</volume><issue>13</issue><spage>16584</spage><epage>16592</epage><pages>16584-16592</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Zinc metal is emerging as the promising anode for aqueous Zn-ion batteries. However, corrosion and undesirable Zn dendrite growth limit their practical application in the large-scale energy storage area. Herein, a mountain–valley micro/nanostructure is successfully fabricated on the surface of the Zn anode via a femtosecond-laser filament texturing (FsLFT) technique. Beneficial from the large surface area and spontaneously generated ZnO coating layer, the FsLFT-Zn electrode demonstrates a slow corrosion rate with a current density of 0.62 mA cm–2 and a stable cycle life over 3000 h under 1 mA cm–2, superior to the original Zn anode. Simulation of the electric fields reveals that the enlarged surface area is responsible for the outstanding performance of the FsLFT-Zn electrode. This study not only proposes a novel strategy to suppress dendrite growth toward highly stable AZIBs but also opens a new avenue to solve similar issues in other metal batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36947678</pmid><doi>10.1021/acsami.2c20075</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6988-898X</orcidid><orcidid>https://orcid.org/0000-0001-6413-0689</orcidid><orcidid>https://orcid.org/0000-0001-8469-7041</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-04, Vol.15 (13), p.16584-16592
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2790052320
source Access via American Chemical Society
subjects Energy, Environmental, and Catalysis Applications
title Interfacial Engineering Boosts Highly Reversible Zinc Metal for Aqueous Zinc-Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Engineering%20Boosts%20Highly%20Reversible%20Zinc%20Metal%20for%20Aqueous%20Zinc-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yao,%20Danwen&rft.date=2023-04-05&rft.volume=15&rft.issue=13&rft.spage=16584&rft.epage=16592&rft.pages=16584-16592&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c20075&rft_dat=%3Cproquest_cross%3E2790052320%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-2425c4e315c2dbba94fd8e68d751bff83c801d46550b8a1e6ab49a5820beb7813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2790052320&rft_id=info:pmid/36947678&rfr_iscdi=true