Loading…

Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion

CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for th...

Full description

Saved in:
Bibliographic Details
Published in:Physica Status Solidi (b) 2003-11, Vol.240 (1), p.134-138
Main Authors: Pandey, Praveen K., Sharma, Kriti, Nagpal, Swati, Bhatnagar, P. K., Mathur, P. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783
cites cdi_FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783
container_end_page 138
container_issue 1
container_start_page 134
container_title Physica Status Solidi (b)
container_volume 240
creator Pandey, Praveen K.
Sharma, Kriti
Nagpal, Swati
Bhatnagar, P. K.
Mathur, P. C.
description CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two‐step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single‐step annealed samples. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssb.200301868
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27908570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27908570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS0EEkvhytkXuGXx2ElsH9kKlpUqQGoLR8t1nNaQ2Kkn0dL--rraauHGaTSa772ZeYS8BbYGxviHCfFqzRkTDFSrnpEVNBwqoRt4TlZMSFaBlvwleYX4izEmQcCK3Gxz2s83NPX0Oqdlortd9WNH0Y_Bpdgtbk6Z3i42zstIuzQj3YeC45xTvD4OCtqH6EcfZ2pjR4e0pxjuPe0CTj5jSPE1edHbAf2bp3pCLj9_ujj9Up192-5OP55VTpSrK6g5qL6WVtYg67Z8UNreOQVe6bZrnPRWt9rWXXlIqxZ4y3rrC3kFkkklTsj7g--U0-3icTZjQOeHwUafFjRcaqYayQq4PoAuJ8TsezPlMNp8Z4CZx0DNY6DmGGgRvHtytujs0GcbXcC_qoY3jeJ14fSB24fB3_3H1Xw_P9_8u6M6aAPO_s9Ra_Nv00ohG_Pz69ZsatHCBjZGiwerL5Z_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27908570</pqid></control><display><type>article</type><title>Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion</title><source>Wiley</source><creator>Pandey, Praveen K. ; Sharma, Kriti ; Nagpal, Swati ; Bhatnagar, P. K. ; Mathur, P. C.</creator><creatorcontrib>Pandey, Praveen K. ; Sharma, Kriti ; Nagpal, Swati ; Bhatnagar, P. K. ; Mathur, P. C.</creatorcontrib><description>CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two‐step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single‐step annealed samples. (© 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200301868</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>61.46.+w ; 68.65.Hb ; 71.55.Gs ; 81.07.−b ; Clusters, nanoparticles, and nanocrystalline materials ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Physics ; Structure of solids and liquids; crystallography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Physica Status Solidi (b), 2003-11, Vol.240 (1), p.134-138</ispartof><rights>Copyright © 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783</citedby><cites>FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15255824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, Praveen K.</creatorcontrib><creatorcontrib>Sharma, Kriti</creatorcontrib><creatorcontrib>Nagpal, Swati</creatorcontrib><creatorcontrib>Bhatnagar, P. K.</creatorcontrib><creatorcontrib>Mathur, P. C.</creatorcontrib><title>Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two‐step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single‐step annealed samples. (© 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>61.46.+w</subject><subject>68.65.Hb</subject><subject>71.55.Gs</subject><subject>81.07.−b</subject><subject>Clusters, nanoparticles, and nanocrystalline materials</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS0EEkvhytkXuGXx2ElsH9kKlpUqQGoLR8t1nNaQ2Kkn0dL--rraauHGaTSa772ZeYS8BbYGxviHCfFqzRkTDFSrnpEVNBwqoRt4TlZMSFaBlvwleYX4izEmQcCK3Gxz2s83NPX0Oqdlortd9WNH0Y_Bpdgtbk6Z3i42zstIuzQj3YeC45xTvD4OCtqH6EcfZ2pjR4e0pxjuPe0CTj5jSPE1edHbAf2bp3pCLj9_ujj9Up192-5OP55VTpSrK6g5qL6WVtYg67Z8UNreOQVe6bZrnPRWt9rWXXlIqxZ4y3rrC3kFkkklTsj7g--U0-3icTZjQOeHwUafFjRcaqYayQq4PoAuJ8TsezPlMNp8Z4CZx0DNY6DmGGgRvHtytujs0GcbXcC_qoY3jeJ14fSB24fB3_3H1Xw_P9_8u6M6aAPO_s9Ra_Nv00ohG_Pz69ZsatHCBjZGiwerL5Z_</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Pandey, Praveen K.</creator><creator>Sharma, Kriti</creator><creator>Nagpal, Swati</creator><creator>Bhatnagar, P. K.</creator><creator>Mathur, P. C.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200311</creationdate><title>Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion</title><author>Pandey, Praveen K. ; Sharma, Kriti ; Nagpal, Swati ; Bhatnagar, P. K. ; Mathur, P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>61.46.+w</topic><topic>68.65.Hb</topic><topic>71.55.Gs</topic><topic>81.07.−b</topic><topic>Clusters, nanoparticles, and nanocrystalline materials</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Praveen K.</creatorcontrib><creatorcontrib>Sharma, Kriti</creatorcontrib><creatorcontrib>Nagpal, Swati</creatorcontrib><creatorcontrib>Bhatnagar, P. K.</creatorcontrib><creatorcontrib>Mathur, P. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Praveen K.</au><au>Sharma, Kriti</au><au>Nagpal, Swati</au><au>Bhatnagar, P. K.</au><au>Mathur, P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2003-11</date><risdate>2003</risdate><volume>240</volume><issue>1</issue><spage>134</spage><epage>138</epage><pages>134-138</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two‐step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single‐step annealed samples. (© 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200301868</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi (b), 2003-11, Vol.240 (1), p.134-138
issn 0370-1972
1521-3951
language eng
recordid cdi_proquest_miscellaneous_27908570
source Wiley
subjects 61.46.+w
68.65.Hb
71.55.Gs
81.07.−b
Clusters, nanoparticles, and nanocrystalline materials
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Physics
Structure of solids and liquids
crystallography
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20group%20II-VI%20semiconductor%20quantum%20dots%20with%20strong%20quantum%20confinement%20and%20low%20size%20dispersion&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Pandey,%20Praveen%20K.&rft.date=2003-11&rft.volume=240&rft.issue=1&rft.spage=134&rft.epage=138&rft.pages=134-138&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200301868&rft_dat=%3Cproquest_cross%3E27908570%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27908570&rft_id=info:pmid/&rfr_iscdi=true