Loading…
Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion
CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for th...
Saved in:
Published in: | Physica Status Solidi (b) 2003-11, Vol.240 (1), p.134-138 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783 |
---|---|
cites | cdi_FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783 |
container_end_page | 138 |
container_issue | 1 |
container_start_page | 134 |
container_title | Physica Status Solidi (b) |
container_volume | 240 |
creator | Pandey, Praveen K. Sharma, Kriti Nagpal, Swati Bhatnagar, P. K. Mathur, P. C. |
description | CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two‐step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single‐step annealed samples. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssb.200301868 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27908570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27908570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS0EEkvhytkXuGXx2ElsH9kKlpUqQGoLR8t1nNaQ2Kkn0dL--rraauHGaTSa772ZeYS8BbYGxviHCfFqzRkTDFSrnpEVNBwqoRt4TlZMSFaBlvwleYX4izEmQcCK3Gxz2s83NPX0Oqdlortd9WNH0Y_Bpdgtbk6Z3i42zstIuzQj3YeC45xTvD4OCtqH6EcfZ2pjR4e0pxjuPe0CTj5jSPE1edHbAf2bp3pCLj9_ujj9Up192-5OP55VTpSrK6g5qL6WVtYg67Z8UNreOQVe6bZrnPRWt9rWXXlIqxZ4y3rrC3kFkkklTsj7g--U0-3icTZjQOeHwUafFjRcaqYayQq4PoAuJ8TsezPlMNp8Z4CZx0DNY6DmGGgRvHtytujs0GcbXcC_qoY3jeJ14fSB24fB3_3H1Xw_P9_8u6M6aAPO_s9Ra_Nv00ohG_Pz69ZsatHCBjZGiwerL5Z_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27908570</pqid></control><display><type>article</type><title>Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion</title><source>Wiley</source><creator>Pandey, Praveen K. ; Sharma, Kriti ; Nagpal, Swati ; Bhatnagar, P. K. ; Mathur, P. C.</creator><creatorcontrib>Pandey, Praveen K. ; Sharma, Kriti ; Nagpal, Swati ; Bhatnagar, P. K. ; Mathur, P. C.</creatorcontrib><description>CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two‐step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single‐step annealed samples. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200301868</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>61.46.+w ; 68.65.Hb ; 71.55.Gs ; 81.07.−b ; Clusters, nanoparticles, and nanocrystalline materials ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Physics ; Structure of solids and liquids; crystallography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Physica Status Solidi (b), 2003-11, Vol.240 (1), p.134-138</ispartof><rights>Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783</citedby><cites>FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15255824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, Praveen K.</creatorcontrib><creatorcontrib>Sharma, Kriti</creatorcontrib><creatorcontrib>Nagpal, Swati</creatorcontrib><creatorcontrib>Bhatnagar, P. K.</creatorcontrib><creatorcontrib>Mathur, P. C.</creatorcontrib><title>Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two‐step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single‐step annealed samples. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>61.46.+w</subject><subject>68.65.Hb</subject><subject>71.55.Gs</subject><subject>81.07.−b</subject><subject>Clusters, nanoparticles, and nanocrystalline materials</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS0EEkvhytkXuGXx2ElsH9kKlpUqQGoLR8t1nNaQ2Kkn0dL--rraauHGaTSa772ZeYS8BbYGxviHCfFqzRkTDFSrnpEVNBwqoRt4TlZMSFaBlvwleYX4izEmQcCK3Gxz2s83NPX0Oqdlortd9WNH0Y_Bpdgtbk6Z3i42zstIuzQj3YeC45xTvD4OCtqH6EcfZ2pjR4e0pxjuPe0CTj5jSPE1edHbAf2bp3pCLj9_ujj9Up192-5OP55VTpSrK6g5qL6WVtYg67Z8UNreOQVe6bZrnPRWt9rWXXlIqxZ4y3rrC3kFkkklTsj7g--U0-3icTZjQOeHwUafFjRcaqYayQq4PoAuJ8TsezPlMNp8Z4CZx0DNY6DmGGgRvHtytujs0GcbXcC_qoY3jeJ14fSB24fB3_3H1Xw_P9_8u6M6aAPO_s9Ra_Nv00ohG_Pz69ZsatHCBjZGiwerL5Z_</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Pandey, Praveen K.</creator><creator>Sharma, Kriti</creator><creator>Nagpal, Swati</creator><creator>Bhatnagar, P. K.</creator><creator>Mathur, P. C.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200311</creationdate><title>Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion</title><author>Pandey, Praveen K. ; Sharma, Kriti ; Nagpal, Swati ; Bhatnagar, P. K. ; Mathur, P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>61.46.+w</topic><topic>68.65.Hb</topic><topic>71.55.Gs</topic><topic>81.07.−b</topic><topic>Clusters, nanoparticles, and nanocrystalline materials</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Praveen K.</creatorcontrib><creatorcontrib>Sharma, Kriti</creatorcontrib><creatorcontrib>Nagpal, Swati</creatorcontrib><creatorcontrib>Bhatnagar, P. K.</creatorcontrib><creatorcontrib>Mathur, P. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Praveen K.</au><au>Sharma, Kriti</au><au>Nagpal, Swati</au><au>Bhatnagar, P. K.</au><au>Mathur, P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2003-11</date><risdate>2003</risdate><volume>240</volume><issue>1</issue><spage>134</spage><epage>138</epage><pages>134-138</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>CdTe quantum dots embedded in glass matrix are grown using two‐step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single‐step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two‐step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single‐step annealed samples. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200301868</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica Status Solidi (b), 2003-11, Vol.240 (1), p.134-138 |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_proquest_miscellaneous_27908570 |
source | Wiley |
subjects | 61.46.+w 68.65.Hb 71.55.Gs 81.07.−b Clusters, nanoparticles, and nanocrystalline materials Condensed matter: structure, mechanical and thermal properties Exact sciences and technology Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Physics Structure of solids and liquids crystallography Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20group%20II-VI%20semiconductor%20quantum%20dots%20with%20strong%20quantum%20confinement%20and%20low%20size%20dispersion&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Pandey,%20Praveen%20K.&rft.date=2003-11&rft.volume=240&rft.issue=1&rft.spage=134&rft.epage=138&rft.pages=134-138&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200301868&rft_dat=%3Cproquest_cross%3E27908570%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3868-14218f47a74174652118ffcc81e896d5c7ea969a4d3709861260fae465b170783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27908570&rft_id=info:pmid/&rfr_iscdi=true |