Loading…

High performance nanocomposites of polyurethane elastomer and organically modified layered silicate

High performance nanocomposites comprising a polyurethane elastomer (PUE) and an organically modified layered silicate are prepared. These nanocomposites are based on poly(propylene glycol), 4,4′‐methylene bis(cyclohexyl isocyanate), 1,4‐butandiol, and organoclay. The tensile strength and strain at...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2003-12, Vol.90 (12), p.3239-3243
Main Authors: Song, M., Hourston, D. J., Yao, K. J., Tay, J. K. H., Ansarifar, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High performance nanocomposites comprising a polyurethane elastomer (PUE) and an organically modified layered silicate are prepared. These nanocomposites are based on poly(propylene glycol), 4,4′‐methylene bis(cyclohexyl isocyanate), 1,4‐butandiol, and organoclay. The tensile strength and strain at break for these novel PUE nanocomposites increases more than 150%, but the hardness remains unchanged. The fatigue properties are significantly improved. With 3 wt % organoclay, the fatigue properties are improved the most, which is important for the PU industry. The effects of the isocyanate index on the mechanical properties of the PUE nanocomposites are investigated. It is found that an isoyanate index of 1.10 results in the best improvement in stress and elongation at break. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3239–3243, 2003
ISSN:0021-8995
1097-4628
DOI:10.1002/app.12979