Loading…
High hydrophobic ZIF-8@cellulose nanofibers/chitosan double network aerogel for oil adsorbent and oil/water separation
Ultralight aerogels with low bulk density, highly porous nature, and functional performance have received significant focus in the field of water pollution treatment. Here, high-crystallinity, large surface-aera metal frame-work (ZIF-8) was efficiently utilized to assist in the preparation of ultral...
Saved in:
Published in: | International journal of biological macromolecules 2023-05, Vol.238, p.124008-124008, Article 124008 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultralight aerogels with low bulk density, highly porous nature, and functional performance have received significant focus in the field of water pollution treatment. Here, high-crystallinity, large surface-aera metal frame-work (ZIF-8) was efficiently utilized to assist in the preparation of ultralight yet highly oil and organic solvent adsorption capacity, double-network cellulose nanofibers/chitosan-based aerogels through a physical entanglement and scalable freeze-drying approach. After chemical vapor deposition with methyltrimethoxysilane, a hydrophobic surface was obtained with a water contact angle of 132.6°. The synthetic ultralight aerogel had low density (15.87 mg/cm3) and high porosity (99.01 %). Moreover, the aerogel had a three-dimensional porous structure, which endowed it with high adsorption capacity (35.99 to 74.55 g/g) for organic solvent, and outstanding cyclic stability (>88 % of the adsorption capacity after 20 cycles). At the same time, aerogel removes oil from various oil/water mixtures by gravity alone and has excellent separation performance. This work holding excellent properties in terms of convenient, low-cost, scalability to manufacture environmentally friendly biomass-based materials for oily water pollution treatment. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.124008 |