Loading…
Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible
Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hinde...
Saved in:
Published in: | Nature materials 2023-04, Vol.22 (4), p.474-481 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13 |
container_end_page | 481 |
container_issue | 4 |
container_start_page | 474 |
container_title | Nature materials |
container_volume | 22 |
creator | Kim, Joohoon Seong, Junhwa Kim, Wonjoong Lee, Gun-Yeal Kim, Seokwoo Kim, Hongyoon Moon, Seong-Won Oh, Dong Kyo Yang, Younghwan Park, Jeonghoon Jang, Jaehyuck Kim, Yeseul Jeong, Minsu Park, Chanwoong Choi, Hojung Jeon, Gyoseon Lee, Kyung-il Yoon, Dong Hyun Park, Namkyoo Lee, Byoungho Lee, Heon Rho, Junsuk |
description | Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.
The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production. |
doi_str_mv | 10.1038/s41563-023-01485-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791376778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791376778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13</originalsourceid><addsrcrecordid>eNp9kbtO3jAYhq0KVCjtDXSoLLGwBHyIDxkRamklpA7AbDnOF2KUxMFOKv6t98AdciX1fwCkDgyWLet538_yg9BXSk4p4foslVRIXhCWFy21KMQHdEhLJYtSSrK3O1PK2AH6lNI9IYwKIT-iAy4rUQnCDtF07Wxv6x7wYMeltW5eoh_vcGhx5--6wo8NPGI7h8E73NsVxOe_T1PoVwNE3K3q6Bs8wGzTEnMYEm5D3FxMXZjD6F3CfsRzB_iPTz7P-Yz2W9sn-LLbj9Dtj-83Fz-Lq9-Xvy7OrwrHlZiLUlDNCKsb2WhJdVUzRirpgKu6blsG1ClC6wpcyUVjSWUzQrQWlVTSOkv5ETrZ9k4xPCyQZjP45KDv7QhhSYapinIlldIZPf4PvQ9LHPPr1hRnmmmuMsW2lIshpQitmaIfbFwZSszah9n6MNmH2fgwIoe-7aqXeoDmNfIiIAN8C6Rp_e8Q32a_U_sP-AuX0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793282837</pqid></control><display><type>article</type><title>Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible</title><source>Nature</source><creator>Kim, Joohoon ; Seong, Junhwa ; Kim, Wonjoong ; Lee, Gun-Yeal ; Kim, Seokwoo ; Kim, Hongyoon ; Moon, Seong-Won ; Oh, Dong Kyo ; Yang, Younghwan ; Park, Jeonghoon ; Jang, Jaehyuck ; Kim, Yeseul ; Jeong, Minsu ; Park, Chanwoong ; Choi, Hojung ; Jeon, Gyoseon ; Lee, Kyung-il ; Yoon, Dong Hyun ; Park, Namkyoo ; Lee, Byoungho ; Lee, Heon ; Rho, Junsuk</creator><creatorcontrib>Kim, Joohoon ; Seong, Junhwa ; Kim, Wonjoong ; Lee, Gun-Yeal ; Kim, Seokwoo ; Kim, Hongyoon ; Moon, Seong-Won ; Oh, Dong Kyo ; Yang, Younghwan ; Park, Jeonghoon ; Jang, Jaehyuck ; Kim, Yeseul ; Jeong, Minsu ; Park, Chanwoong ; Choi, Hojung ; Jeon, Gyoseon ; Lee, Kyung-il ; Yoon, Dong Hyun ; Park, Namkyoo ; Lee, Byoungho ; Lee, Heon ; Rho, Junsuk</creatorcontrib><description>Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.
The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-023-01485-5</identifier><identifier>PMID: 36959502</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/301/1023/1025 ; 639/301/930/1032 ; 639/301/930/543 ; 639/925/357/1015 ; 639/925/927/1021 ; Argon ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Efficiency ; Engineering ; Fabrication ; Fluorides ; Lasers ; Light ; Lithography ; Low cost ; Manufacturing ; Mass production ; Materials Science ; Nanolithography ; Nanotechnology ; Optical and Electronic Materials ; Polymers ; Refractive lenses ; Thickness ; Virtual reality</subject><ispartof>Nature materials, 2023-04, Vol.22 (4), p.474-481</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13</citedby><cites>FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13</cites><orcidid>0000-0002-0827-1919 ; 0000-0003-3082-7909 ; 0000-0003-2173-4217 ; 0000-0001-9369-0853 ; 0000-0003-0197-7633 ; 0000-0002-0477-9539 ; 0000-0002-2179-2890 ; 0000-0001-7025-6720 ; 0000-0003-1964-3746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36959502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Joohoon</creatorcontrib><creatorcontrib>Seong, Junhwa</creatorcontrib><creatorcontrib>Kim, Wonjoong</creatorcontrib><creatorcontrib>Lee, Gun-Yeal</creatorcontrib><creatorcontrib>Kim, Seokwoo</creatorcontrib><creatorcontrib>Kim, Hongyoon</creatorcontrib><creatorcontrib>Moon, Seong-Won</creatorcontrib><creatorcontrib>Oh, Dong Kyo</creatorcontrib><creatorcontrib>Yang, Younghwan</creatorcontrib><creatorcontrib>Park, Jeonghoon</creatorcontrib><creatorcontrib>Jang, Jaehyuck</creatorcontrib><creatorcontrib>Kim, Yeseul</creatorcontrib><creatorcontrib>Jeong, Minsu</creatorcontrib><creatorcontrib>Park, Chanwoong</creatorcontrib><creatorcontrib>Choi, Hojung</creatorcontrib><creatorcontrib>Jeon, Gyoseon</creatorcontrib><creatorcontrib>Lee, Kyung-il</creatorcontrib><creatorcontrib>Yoon, Dong Hyun</creatorcontrib><creatorcontrib>Park, Namkyoo</creatorcontrib><creatorcontrib>Lee, Byoungho</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Rho, Junsuk</creatorcontrib><title>Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.
The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.</description><subject>142/126</subject><subject>639/301/1023/1025</subject><subject>639/301/930/1032</subject><subject>639/301/930/543</subject><subject>639/925/357/1015</subject><subject>639/925/927/1021</subject><subject>Argon</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Fabrication</subject><subject>Fluorides</subject><subject>Lasers</subject><subject>Light</subject><subject>Lithography</subject><subject>Low cost</subject><subject>Manufacturing</subject><subject>Mass production</subject><subject>Materials Science</subject><subject>Nanolithography</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Polymers</subject><subject>Refractive lenses</subject><subject>Thickness</subject><subject>Virtual reality</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kbtO3jAYhq0KVCjtDXSoLLGwBHyIDxkRamklpA7AbDnOF2KUxMFOKv6t98AdciX1fwCkDgyWLet538_yg9BXSk4p4foslVRIXhCWFy21KMQHdEhLJYtSSrK3O1PK2AH6lNI9IYwKIT-iAy4rUQnCDtF07Wxv6x7wYMeltW5eoh_vcGhx5--6wo8NPGI7h8E73NsVxOe_T1PoVwNE3K3q6Bs8wGzTEnMYEm5D3FxMXZjD6F3CfsRzB_iPTz7P-Yz2W9sn-LLbj9Dtj-83Fz-Lq9-Xvy7OrwrHlZiLUlDNCKsb2WhJdVUzRirpgKu6blsG1ClC6wpcyUVjSWUzQrQWlVTSOkv5ETrZ9k4xPCyQZjP45KDv7QhhSYapinIlldIZPf4PvQ9LHPPr1hRnmmmuMsW2lIshpQitmaIfbFwZSszah9n6MNmH2fgwIoe-7aqXeoDmNfIiIAN8C6Rp_e8Q32a_U_sP-AuX0A</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Kim, Joohoon</creator><creator>Seong, Junhwa</creator><creator>Kim, Wonjoong</creator><creator>Lee, Gun-Yeal</creator><creator>Kim, Seokwoo</creator><creator>Kim, Hongyoon</creator><creator>Moon, Seong-Won</creator><creator>Oh, Dong Kyo</creator><creator>Yang, Younghwan</creator><creator>Park, Jeonghoon</creator><creator>Jang, Jaehyuck</creator><creator>Kim, Yeseul</creator><creator>Jeong, Minsu</creator><creator>Park, Chanwoong</creator><creator>Choi, Hojung</creator><creator>Jeon, Gyoseon</creator><creator>Lee, Kyung-il</creator><creator>Yoon, Dong Hyun</creator><creator>Park, Namkyoo</creator><creator>Lee, Byoungho</creator><creator>Lee, Heon</creator><creator>Rho, Junsuk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0827-1919</orcidid><orcidid>https://orcid.org/0000-0003-3082-7909</orcidid><orcidid>https://orcid.org/0000-0003-2173-4217</orcidid><orcidid>https://orcid.org/0000-0001-9369-0853</orcidid><orcidid>https://orcid.org/0000-0003-0197-7633</orcidid><orcidid>https://orcid.org/0000-0002-0477-9539</orcidid><orcidid>https://orcid.org/0000-0002-2179-2890</orcidid><orcidid>https://orcid.org/0000-0001-7025-6720</orcidid><orcidid>https://orcid.org/0000-0003-1964-3746</orcidid></search><sort><creationdate>20230401</creationdate><title>Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible</title><author>Kim, Joohoon ; Seong, Junhwa ; Kim, Wonjoong ; Lee, Gun-Yeal ; Kim, Seokwoo ; Kim, Hongyoon ; Moon, Seong-Won ; Oh, Dong Kyo ; Yang, Younghwan ; Park, Jeonghoon ; Jang, Jaehyuck ; Kim, Yeseul ; Jeong, Minsu ; Park, Chanwoong ; Choi, Hojung ; Jeon, Gyoseon ; Lee, Kyung-il ; Yoon, Dong Hyun ; Park, Namkyoo ; Lee, Byoungho ; Lee, Heon ; Rho, Junsuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>142/126</topic><topic>639/301/1023/1025</topic><topic>639/301/930/1032</topic><topic>639/301/930/543</topic><topic>639/925/357/1015</topic><topic>639/925/927/1021</topic><topic>Argon</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Fabrication</topic><topic>Fluorides</topic><topic>Lasers</topic><topic>Light</topic><topic>Lithography</topic><topic>Low cost</topic><topic>Manufacturing</topic><topic>Mass production</topic><topic>Materials Science</topic><topic>Nanolithography</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Polymers</topic><topic>Refractive lenses</topic><topic>Thickness</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Joohoon</creatorcontrib><creatorcontrib>Seong, Junhwa</creatorcontrib><creatorcontrib>Kim, Wonjoong</creatorcontrib><creatorcontrib>Lee, Gun-Yeal</creatorcontrib><creatorcontrib>Kim, Seokwoo</creatorcontrib><creatorcontrib>Kim, Hongyoon</creatorcontrib><creatorcontrib>Moon, Seong-Won</creatorcontrib><creatorcontrib>Oh, Dong Kyo</creatorcontrib><creatorcontrib>Yang, Younghwan</creatorcontrib><creatorcontrib>Park, Jeonghoon</creatorcontrib><creatorcontrib>Jang, Jaehyuck</creatorcontrib><creatorcontrib>Kim, Yeseul</creatorcontrib><creatorcontrib>Jeong, Minsu</creatorcontrib><creatorcontrib>Park, Chanwoong</creatorcontrib><creatorcontrib>Choi, Hojung</creatorcontrib><creatorcontrib>Jeon, Gyoseon</creatorcontrib><creatorcontrib>Lee, Kyung-il</creatorcontrib><creatorcontrib>Yoon, Dong Hyun</creatorcontrib><creatorcontrib>Park, Namkyoo</creatorcontrib><creatorcontrib>Lee, Byoungho</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Rho, Junsuk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Joohoon</au><au>Seong, Junhwa</au><au>Kim, Wonjoong</au><au>Lee, Gun-Yeal</au><au>Kim, Seokwoo</au><au>Kim, Hongyoon</au><au>Moon, Seong-Won</au><au>Oh, Dong Kyo</au><au>Yang, Younghwan</au><au>Park, Jeonghoon</au><au>Jang, Jaehyuck</au><au>Kim, Yeseul</au><au>Jeong, Minsu</au><au>Park, Chanwoong</au><au>Choi, Hojung</au><au>Jeon, Gyoseon</au><au>Lee, Kyung-il</au><au>Yoon, Dong Hyun</au><au>Park, Namkyoo</au><au>Lee, Byoungho</au><au>Lee, Heon</au><au>Rho, Junsuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>22</volume><issue>4</issue><spage>474</spage><epage>481</epage><pages>474-481</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.
The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36959502</pmid><doi>10.1038/s41563-023-01485-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0827-1919</orcidid><orcidid>https://orcid.org/0000-0003-3082-7909</orcidid><orcidid>https://orcid.org/0000-0003-2173-4217</orcidid><orcidid>https://orcid.org/0000-0001-9369-0853</orcidid><orcidid>https://orcid.org/0000-0003-0197-7633</orcidid><orcidid>https://orcid.org/0000-0002-0477-9539</orcidid><orcidid>https://orcid.org/0000-0002-2179-2890</orcidid><orcidid>https://orcid.org/0000-0001-7025-6720</orcidid><orcidid>https://orcid.org/0000-0003-1964-3746</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2023-04, Vol.22 (4), p.474-481 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2791376778 |
source | Nature |
subjects | 142/126 639/301/1023/1025 639/301/930/1032 639/301/930/543 639/925/357/1015 639/925/927/1021 Argon Biomaterials Chemistry and Materials Science Condensed Matter Physics Efficiency Engineering Fabrication Fluorides Lasers Light Lithography Low cost Manufacturing Mass production Materials Science Nanolithography Nanotechnology Optical and Electronic Materials Polymers Refractive lenses Thickness Virtual reality |
title | Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20manufacturing%20of%20high-index%20atomic%20layer%E2%80%93polymer%20hybrid%20metasurfaces%20for%20metaphotonics%20in%20the%20visible&rft.jtitle=Nature%20materials&rft.au=Kim,%20Joohoon&rft.date=2023-04-01&rft.volume=22&rft.issue=4&rft.spage=474&rft.epage=481&rft.pages=474-481&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-023-01485-5&rft_dat=%3Cproquest_cross%3E2791376778%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2793282837&rft_id=info:pmid/36959502&rfr_iscdi=true |