Loading…

Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible

Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hinde...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2023-04, Vol.22 (4), p.474-481
Main Authors: Kim, Joohoon, Seong, Junhwa, Kim, Wonjoong, Lee, Gun-Yeal, Kim, Seokwoo, Kim, Hongyoon, Moon, Seong-Won, Oh, Dong Kyo, Yang, Younghwan, Park, Jeonghoon, Jang, Jaehyuck, Kim, Yeseul, Jeong, Minsu, Park, Chanwoong, Choi, Hojung, Jeon, Gyoseon, Lee, Kyung-il, Yoon, Dong Hyun, Park, Namkyoo, Lee, Byoungho, Lee, Heon, Rho, Junsuk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13
cites cdi_FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13
container_end_page 481
container_issue 4
container_start_page 474
container_title Nature materials
container_volume 22
creator Kim, Joohoon
Seong, Junhwa
Kim, Wonjoong
Lee, Gun-Yeal
Kim, Seokwoo
Kim, Hongyoon
Moon, Seong-Won
Oh, Dong Kyo
Yang, Younghwan
Park, Jeonghoon
Jang, Jaehyuck
Kim, Yeseul
Jeong, Minsu
Park, Chanwoong
Choi, Hojung
Jeon, Gyoseon
Lee, Kyung-il
Yoon, Dong Hyun
Park, Namkyoo
Lee, Byoungho
Lee, Heon
Rho, Junsuk
description Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices. The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.
doi_str_mv 10.1038/s41563-023-01485-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791376778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791376778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13</originalsourceid><addsrcrecordid>eNp9kbtO3jAYhq0KVCjtDXSoLLGwBHyIDxkRamklpA7AbDnOF2KUxMFOKv6t98AdciX1fwCkDgyWLet538_yg9BXSk4p4foslVRIXhCWFy21KMQHdEhLJYtSSrK3O1PK2AH6lNI9IYwKIT-iAy4rUQnCDtF07Wxv6x7wYMeltW5eoh_vcGhx5--6wo8NPGI7h8E73NsVxOe_T1PoVwNE3K3q6Bs8wGzTEnMYEm5D3FxMXZjD6F3CfsRzB_iPTz7P-Yz2W9sn-LLbj9Dtj-83Fz-Lq9-Xvy7OrwrHlZiLUlDNCKsb2WhJdVUzRirpgKu6blsG1ClC6wpcyUVjSWUzQrQWlVTSOkv5ETrZ9k4xPCyQZjP45KDv7QhhSYapinIlldIZPf4PvQ9LHPPr1hRnmmmuMsW2lIshpQitmaIfbFwZSszah9n6MNmH2fgwIoe-7aqXeoDmNfIiIAN8C6Rp_e8Q32a_U_sP-AuX0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793282837</pqid></control><display><type>article</type><title>Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible</title><source>Nature</source><creator>Kim, Joohoon ; Seong, Junhwa ; Kim, Wonjoong ; Lee, Gun-Yeal ; Kim, Seokwoo ; Kim, Hongyoon ; Moon, Seong-Won ; Oh, Dong Kyo ; Yang, Younghwan ; Park, Jeonghoon ; Jang, Jaehyuck ; Kim, Yeseul ; Jeong, Minsu ; Park, Chanwoong ; Choi, Hojung ; Jeon, Gyoseon ; Lee, Kyung-il ; Yoon, Dong Hyun ; Park, Namkyoo ; Lee, Byoungho ; Lee, Heon ; Rho, Junsuk</creator><creatorcontrib>Kim, Joohoon ; Seong, Junhwa ; Kim, Wonjoong ; Lee, Gun-Yeal ; Kim, Seokwoo ; Kim, Hongyoon ; Moon, Seong-Won ; Oh, Dong Kyo ; Yang, Younghwan ; Park, Jeonghoon ; Jang, Jaehyuck ; Kim, Yeseul ; Jeong, Minsu ; Park, Chanwoong ; Choi, Hojung ; Jeon, Gyoseon ; Lee, Kyung-il ; Yoon, Dong Hyun ; Park, Namkyoo ; Lee, Byoungho ; Lee, Heon ; Rho, Junsuk</creatorcontrib><description>Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices. The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-023-01485-5</identifier><identifier>PMID: 36959502</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/301/1023/1025 ; 639/301/930/1032 ; 639/301/930/543 ; 639/925/357/1015 ; 639/925/927/1021 ; Argon ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Efficiency ; Engineering ; Fabrication ; Fluorides ; Lasers ; Light ; Lithography ; Low cost ; Manufacturing ; Mass production ; Materials Science ; Nanolithography ; Nanotechnology ; Optical and Electronic Materials ; Polymers ; Refractive lenses ; Thickness ; Virtual reality</subject><ispartof>Nature materials, 2023-04, Vol.22 (4), p.474-481</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13</citedby><cites>FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13</cites><orcidid>0000-0002-0827-1919 ; 0000-0003-3082-7909 ; 0000-0003-2173-4217 ; 0000-0001-9369-0853 ; 0000-0003-0197-7633 ; 0000-0002-0477-9539 ; 0000-0002-2179-2890 ; 0000-0001-7025-6720 ; 0000-0003-1964-3746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36959502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Joohoon</creatorcontrib><creatorcontrib>Seong, Junhwa</creatorcontrib><creatorcontrib>Kim, Wonjoong</creatorcontrib><creatorcontrib>Lee, Gun-Yeal</creatorcontrib><creatorcontrib>Kim, Seokwoo</creatorcontrib><creatorcontrib>Kim, Hongyoon</creatorcontrib><creatorcontrib>Moon, Seong-Won</creatorcontrib><creatorcontrib>Oh, Dong Kyo</creatorcontrib><creatorcontrib>Yang, Younghwan</creatorcontrib><creatorcontrib>Park, Jeonghoon</creatorcontrib><creatorcontrib>Jang, Jaehyuck</creatorcontrib><creatorcontrib>Kim, Yeseul</creatorcontrib><creatorcontrib>Jeong, Minsu</creatorcontrib><creatorcontrib>Park, Chanwoong</creatorcontrib><creatorcontrib>Choi, Hojung</creatorcontrib><creatorcontrib>Jeon, Gyoseon</creatorcontrib><creatorcontrib>Lee, Kyung-il</creatorcontrib><creatorcontrib>Yoon, Dong Hyun</creatorcontrib><creatorcontrib>Park, Namkyoo</creatorcontrib><creatorcontrib>Lee, Byoungho</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Rho, Junsuk</creatorcontrib><title>Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices. The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.</description><subject>142/126</subject><subject>639/301/1023/1025</subject><subject>639/301/930/1032</subject><subject>639/301/930/543</subject><subject>639/925/357/1015</subject><subject>639/925/927/1021</subject><subject>Argon</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Fabrication</subject><subject>Fluorides</subject><subject>Lasers</subject><subject>Light</subject><subject>Lithography</subject><subject>Low cost</subject><subject>Manufacturing</subject><subject>Mass production</subject><subject>Materials Science</subject><subject>Nanolithography</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Polymers</subject><subject>Refractive lenses</subject><subject>Thickness</subject><subject>Virtual reality</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kbtO3jAYhq0KVCjtDXSoLLGwBHyIDxkRamklpA7AbDnOF2KUxMFOKv6t98AdciX1fwCkDgyWLet538_yg9BXSk4p4foslVRIXhCWFy21KMQHdEhLJYtSSrK3O1PK2AH6lNI9IYwKIT-iAy4rUQnCDtF07Wxv6x7wYMeltW5eoh_vcGhx5--6wo8NPGI7h8E73NsVxOe_T1PoVwNE3K3q6Bs8wGzTEnMYEm5D3FxMXZjD6F3CfsRzB_iPTz7P-Yz2W9sn-LLbj9Dtj-83Fz-Lq9-Xvy7OrwrHlZiLUlDNCKsb2WhJdVUzRirpgKu6blsG1ClC6wpcyUVjSWUzQrQWlVTSOkv5ETrZ9k4xPCyQZjP45KDv7QhhSYapinIlldIZPf4PvQ9LHPPr1hRnmmmuMsW2lIshpQitmaIfbFwZSszah9n6MNmH2fgwIoe-7aqXeoDmNfIiIAN8C6Rp_e8Q32a_U_sP-AuX0A</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Kim, Joohoon</creator><creator>Seong, Junhwa</creator><creator>Kim, Wonjoong</creator><creator>Lee, Gun-Yeal</creator><creator>Kim, Seokwoo</creator><creator>Kim, Hongyoon</creator><creator>Moon, Seong-Won</creator><creator>Oh, Dong Kyo</creator><creator>Yang, Younghwan</creator><creator>Park, Jeonghoon</creator><creator>Jang, Jaehyuck</creator><creator>Kim, Yeseul</creator><creator>Jeong, Minsu</creator><creator>Park, Chanwoong</creator><creator>Choi, Hojung</creator><creator>Jeon, Gyoseon</creator><creator>Lee, Kyung-il</creator><creator>Yoon, Dong Hyun</creator><creator>Park, Namkyoo</creator><creator>Lee, Byoungho</creator><creator>Lee, Heon</creator><creator>Rho, Junsuk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0827-1919</orcidid><orcidid>https://orcid.org/0000-0003-3082-7909</orcidid><orcidid>https://orcid.org/0000-0003-2173-4217</orcidid><orcidid>https://orcid.org/0000-0001-9369-0853</orcidid><orcidid>https://orcid.org/0000-0003-0197-7633</orcidid><orcidid>https://orcid.org/0000-0002-0477-9539</orcidid><orcidid>https://orcid.org/0000-0002-2179-2890</orcidid><orcidid>https://orcid.org/0000-0001-7025-6720</orcidid><orcidid>https://orcid.org/0000-0003-1964-3746</orcidid></search><sort><creationdate>20230401</creationdate><title>Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible</title><author>Kim, Joohoon ; Seong, Junhwa ; Kim, Wonjoong ; Lee, Gun-Yeal ; Kim, Seokwoo ; Kim, Hongyoon ; Moon, Seong-Won ; Oh, Dong Kyo ; Yang, Younghwan ; Park, Jeonghoon ; Jang, Jaehyuck ; Kim, Yeseul ; Jeong, Minsu ; Park, Chanwoong ; Choi, Hojung ; Jeon, Gyoseon ; Lee, Kyung-il ; Yoon, Dong Hyun ; Park, Namkyoo ; Lee, Byoungho ; Lee, Heon ; Rho, Junsuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>142/126</topic><topic>639/301/1023/1025</topic><topic>639/301/930/1032</topic><topic>639/301/930/543</topic><topic>639/925/357/1015</topic><topic>639/925/927/1021</topic><topic>Argon</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Fabrication</topic><topic>Fluorides</topic><topic>Lasers</topic><topic>Light</topic><topic>Lithography</topic><topic>Low cost</topic><topic>Manufacturing</topic><topic>Mass production</topic><topic>Materials Science</topic><topic>Nanolithography</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Polymers</topic><topic>Refractive lenses</topic><topic>Thickness</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Joohoon</creatorcontrib><creatorcontrib>Seong, Junhwa</creatorcontrib><creatorcontrib>Kim, Wonjoong</creatorcontrib><creatorcontrib>Lee, Gun-Yeal</creatorcontrib><creatorcontrib>Kim, Seokwoo</creatorcontrib><creatorcontrib>Kim, Hongyoon</creatorcontrib><creatorcontrib>Moon, Seong-Won</creatorcontrib><creatorcontrib>Oh, Dong Kyo</creatorcontrib><creatorcontrib>Yang, Younghwan</creatorcontrib><creatorcontrib>Park, Jeonghoon</creatorcontrib><creatorcontrib>Jang, Jaehyuck</creatorcontrib><creatorcontrib>Kim, Yeseul</creatorcontrib><creatorcontrib>Jeong, Minsu</creatorcontrib><creatorcontrib>Park, Chanwoong</creatorcontrib><creatorcontrib>Choi, Hojung</creatorcontrib><creatorcontrib>Jeon, Gyoseon</creatorcontrib><creatorcontrib>Lee, Kyung-il</creatorcontrib><creatorcontrib>Yoon, Dong Hyun</creatorcontrib><creatorcontrib>Park, Namkyoo</creatorcontrib><creatorcontrib>Lee, Byoungho</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Rho, Junsuk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Joohoon</au><au>Seong, Junhwa</au><au>Kim, Wonjoong</au><au>Lee, Gun-Yeal</au><au>Kim, Seokwoo</au><au>Kim, Hongyoon</au><au>Moon, Seong-Won</au><au>Oh, Dong Kyo</au><au>Yang, Younghwan</au><au>Park, Jeonghoon</au><au>Jang, Jaehyuck</au><au>Kim, Yeseul</au><au>Jeong, Minsu</au><au>Park, Chanwoong</au><au>Choi, Hojung</au><au>Jeon, Gyoseon</au><au>Lee, Kyung-il</au><au>Yoon, Dong Hyun</au><au>Park, Namkyoo</au><au>Lee, Byoungho</au><au>Lee, Heon</au><au>Rho, Junsuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>22</volume><issue>4</issue><spage>474</spage><epage>481</epage><pages>474-481</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices. The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36959502</pmid><doi>10.1038/s41563-023-01485-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0827-1919</orcidid><orcidid>https://orcid.org/0000-0003-3082-7909</orcidid><orcidid>https://orcid.org/0000-0003-2173-4217</orcidid><orcidid>https://orcid.org/0000-0001-9369-0853</orcidid><orcidid>https://orcid.org/0000-0003-0197-7633</orcidid><orcidid>https://orcid.org/0000-0002-0477-9539</orcidid><orcidid>https://orcid.org/0000-0002-2179-2890</orcidid><orcidid>https://orcid.org/0000-0001-7025-6720</orcidid><orcidid>https://orcid.org/0000-0003-1964-3746</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2023-04, Vol.22 (4), p.474-481
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2791376778
source Nature
subjects 142/126
639/301/1023/1025
639/301/930/1032
639/301/930/543
639/925/357/1015
639/925/927/1021
Argon
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Efficiency
Engineering
Fabrication
Fluorides
Lasers
Light
Lithography
Low cost
Manufacturing
Mass production
Materials Science
Nanolithography
Nanotechnology
Optical and Electronic Materials
Polymers
Refractive lenses
Thickness
Virtual reality
title Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20manufacturing%20of%20high-index%20atomic%20layer%E2%80%93polymer%20hybrid%20metasurfaces%20for%20metaphotonics%20in%20the%20visible&rft.jtitle=Nature%20materials&rft.au=Kim,%20Joohoon&rft.date=2023-04-01&rft.volume=22&rft.issue=4&rft.spage=474&rft.epage=481&rft.pages=474-481&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-023-01485-5&rft_dat=%3Cproquest_cross%3E2791376778%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-4518202bd6d86189b22096ce37bbff2e1c701b9ec435da09a89b08859676aca13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2793282837&rft_id=info:pmid/36959502&rfr_iscdi=true