Loading…

Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon

The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of mathematical biology 2023-05, Vol.85 (5), p.35-35, Article 35
Main Authors: Kim, Yong-Jung, Mimura, Masayasu, Yoon, Changwook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3
container_end_page 35
container_issue 5
container_start_page 35
container_title Bulletin of mathematical biology
container_volume 85
creator Kim, Yong-Jung
Mimura, Masayasu
Yoon, Changwook
description The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population dynamics of bacteria, but the population of bacteria multiplies and plays a crucial role in wave propagation. In this paper, we consider the singular limits of a linear system with active and inactive cells together with bacterial population dynamics. Eventually, we see that if there are no chemotactic dynamics in the system, we only obtain a monotone traveling wave. This is evidence that chemotaxis dynamics are needed even if population growth is included in the system.
doi_str_mv 10.1007/s11538-023-01138-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791710056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791649051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMotlb_gAsZcONmNI_JC1dan1DURcVlyMwkdco0qUlH8N8bO1XBhYuQD3Lu_cIB4BDBUwQhP4sIUSJyiEkOEUoT2QJDRDHOJYN4GwwhlDgXuIADsBfjHKaQJHIXDAiTHAkphuD8wbu2cUaH7KqxtouNd5n1IbvU1cqERrfZNOh3k5hZ9pKG7OnVOL9Ix-2DHavbaA429wg831xPx3f55PH2fnwxySuC2SrHJSmKAteaSyMKQjDVtDTW1IxxoW2pIUWScQ2FZLKWlkpOcV3QSuAa19aSETjpe5fBv3UmrtSiiZVpW-2M76LCXCKejFCW0OM_6Nx3waXfrSlWyLQsUbinquBjDMaqZWgWOnwoBNWXWtWrVUmtWqtVJIWONtVduTD1T-TbZQJID8T05GYm_O7-p_YTpSOCRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791649051</pqid></control><display><type>article</type><title>Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon</title><source>Springer Nature</source><creator>Kim, Yong-Jung ; Mimura, Masayasu ; Yoon, Changwook</creator><creatorcontrib>Kim, Yong-Jung ; Mimura, Masayasu ; Yoon, Changwook</creatorcontrib><description>The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population dynamics of bacteria, but the population of bacteria multiplies and plays a crucial role in wave propagation. In this paper, we consider the singular limits of a linear system with active and inactive cells together with bacterial population dynamics. Eventually, we see that if there are no chemotactic dynamics in the system, we only obtain a monotone traveling wave. This is evidence that chemotaxis dynamics are needed even if population growth is included in the system.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-023-01138-3</identifier><identifier>PMID: 36971898</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Bacteria ; Cell Biology ; Chemotaxis ; Diffusion ; Life Sciences ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical Modelling ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Original Article ; Population dynamics ; Population growth ; Simulation of Biological Systems in memory of Masayasu Mimura ; Traveling waves ; Wave propagation</subject><ispartof>Bulletin of mathematical biology, 2023-05, Vol.85 (5), p.35-35, Article 35</ispartof><rights>The Author(s), under exclusive licence to Society for Mathematical Biology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Society for Mathematical Biology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3</cites><orcidid>0000-0003-0200-9618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36971898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yong-Jung</creatorcontrib><creatorcontrib>Mimura, Masayasu</creatorcontrib><creatorcontrib>Yoon, Changwook</creatorcontrib><title>Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population dynamics of bacteria, but the population of bacteria multiplies and plays a crucial role in wave propagation. In this paper, we consider the singular limits of a linear system with active and inactive cells together with bacterial population dynamics. Eventually, we see that if there are no chemotactic dynamics in the system, we only obtain a monotone traveling wave. This is evidence that chemotaxis dynamics are needed even if population growth is included in the system.</description><subject>Analysis</subject><subject>Bacteria</subject><subject>Cell Biology</subject><subject>Chemotaxis</subject><subject>Diffusion</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical Modelling</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Original Article</subject><subject>Population dynamics</subject><subject>Population growth</subject><subject>Simulation of Biological Systems in memory of Masayasu Mimura</subject><subject>Traveling waves</subject><subject>Wave propagation</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEYRYMotlb_gAsZcONmNI_JC1dan1DURcVlyMwkdco0qUlH8N8bO1XBhYuQD3Lu_cIB4BDBUwQhP4sIUSJyiEkOEUoT2QJDRDHOJYN4GwwhlDgXuIADsBfjHKaQJHIXDAiTHAkphuD8wbu2cUaH7KqxtouNd5n1IbvU1cqERrfZNOh3k5hZ9pKG7OnVOL9Ix-2DHavbaA429wg831xPx3f55PH2fnwxySuC2SrHJSmKAteaSyMKQjDVtDTW1IxxoW2pIUWScQ2FZLKWlkpOcV3QSuAa19aSETjpe5fBv3UmrtSiiZVpW-2M76LCXCKejFCW0OM_6Nx3waXfrSlWyLQsUbinquBjDMaqZWgWOnwoBNWXWtWrVUmtWqtVJIWONtVduTD1T-TbZQJID8T05GYm_O7-p_YTpSOCRg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Kim, Yong-Jung</creator><creator>Mimura, Masayasu</creator><creator>Yoon, Changwook</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0200-9618</orcidid></search><sort><creationdate>20230501</creationdate><title>Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon</title><author>Kim, Yong-Jung ; Mimura, Masayasu ; Yoon, Changwook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Bacteria</topic><topic>Cell Biology</topic><topic>Chemotaxis</topic><topic>Diffusion</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical Modelling</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Original Article</topic><topic>Population dynamics</topic><topic>Population growth</topic><topic>Simulation of Biological Systems in memory of Masayasu Mimura</topic><topic>Traveling waves</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yong-Jung</creatorcontrib><creatorcontrib>Mimura, Masayasu</creatorcontrib><creatorcontrib>Yoon, Changwook</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yong-Jung</au><au>Mimura, Masayasu</au><au>Yoon, Changwook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>85</volume><issue>5</issue><spage>35</spage><epage>35</epage><pages>35-35</pages><artnum>35</artnum><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population dynamics of bacteria, but the population of bacteria multiplies and plays a crucial role in wave propagation. In this paper, we consider the singular limits of a linear system with active and inactive cells together with bacterial population dynamics. Eventually, we see that if there are no chemotactic dynamics in the system, we only obtain a monotone traveling wave. This is evidence that chemotaxis dynamics are needed even if population growth is included in the system.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36971898</pmid><doi>10.1007/s11538-023-01138-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0200-9618</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2023-05, Vol.85 (5), p.35-35, Article 35
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_2791710056
source Springer Nature
subjects Analysis
Bacteria
Cell Biology
Chemotaxis
Diffusion
Life Sciences
Mathematical analysis
Mathematical and Computational Biology
Mathematical Concepts
Mathematical Modelling
Mathematics
Mathematics and Statistics
Models, Biological
Original Article
Population dynamics
Population growth
Simulation of Biological Systems in memory of Masayasu Mimura
Traveling waves
Wave propagation
title Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Diffusion%20for%20Bacterial%20Traveling%20Wave%20Phenomenon&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Kim,%20Yong-Jung&rft.date=2023-05-01&rft.volume=85&rft.issue=5&rft.spage=35&rft.epage=35&rft.pages=35-35&rft.artnum=35&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-023-01138-3&rft_dat=%3Cproquest_cross%3E2791649051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791649051&rft_id=info:pmid/36971898&rfr_iscdi=true