Loading…
Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon
The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population...
Saved in:
Published in: | Bulletin of mathematical biology 2023-05, Vol.85 (5), p.35-35, Article 35 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3 |
container_end_page | 35 |
container_issue | 5 |
container_start_page | 35 |
container_title | Bulletin of mathematical biology |
container_volume | 85 |
creator | Kim, Yong-Jung Mimura, Masayasu Yoon, Changwook |
description | The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population dynamics of bacteria, but the population of bacteria multiplies and plays a crucial role in wave propagation. In this paper, we consider the singular limits of a linear system with active and inactive cells together with bacterial population dynamics. Eventually, we see that if there are no chemotactic dynamics in the system, we only obtain a monotone traveling wave. This is evidence that chemotaxis dynamics are needed even if population growth is included in the system. |
doi_str_mv | 10.1007/s11538-023-01138-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791710056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791649051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMotlb_gAsZcONmNI_JC1dan1DURcVlyMwkdco0qUlH8N8bO1XBhYuQD3Lu_cIB4BDBUwQhP4sIUSJyiEkOEUoT2QJDRDHOJYN4GwwhlDgXuIADsBfjHKaQJHIXDAiTHAkphuD8wbu2cUaH7KqxtouNd5n1IbvU1cqERrfZNOh3k5hZ9pKG7OnVOL9Ix-2DHavbaA429wg831xPx3f55PH2fnwxySuC2SrHJSmKAteaSyMKQjDVtDTW1IxxoW2pIUWScQ2FZLKWlkpOcV3QSuAa19aSETjpe5fBv3UmrtSiiZVpW-2M76LCXCKejFCW0OM_6Nx3waXfrSlWyLQsUbinquBjDMaqZWgWOnwoBNWXWtWrVUmtWqtVJIWONtVduTD1T-TbZQJID8T05GYm_O7-p_YTpSOCRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791649051</pqid></control><display><type>article</type><title>Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon</title><source>Springer Nature</source><creator>Kim, Yong-Jung ; Mimura, Masayasu ; Yoon, Changwook</creator><creatorcontrib>Kim, Yong-Jung ; Mimura, Masayasu ; Yoon, Changwook</creatorcontrib><description>The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population dynamics of bacteria, but the population of bacteria multiplies and plays a crucial role in wave propagation. In this paper, we consider the singular limits of a linear system with active and inactive cells together with bacterial population dynamics. Eventually, we see that if there are no chemotactic dynamics in the system, we only obtain a monotone traveling wave. This is evidence that chemotaxis dynamics are needed even if population growth is included in the system.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-023-01138-3</identifier><identifier>PMID: 36971898</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Bacteria ; Cell Biology ; Chemotaxis ; Diffusion ; Life Sciences ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical Modelling ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Original Article ; Population dynamics ; Population growth ; Simulation of Biological Systems in memory of Masayasu Mimura ; Traveling waves ; Wave propagation</subject><ispartof>Bulletin of mathematical biology, 2023-05, Vol.85 (5), p.35-35, Article 35</ispartof><rights>The Author(s), under exclusive licence to Society for Mathematical Biology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Society for Mathematical Biology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3</cites><orcidid>0000-0003-0200-9618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36971898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yong-Jung</creatorcontrib><creatorcontrib>Mimura, Masayasu</creatorcontrib><creatorcontrib>Yoon, Changwook</creatorcontrib><title>Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population dynamics of bacteria, but the population of bacteria multiplies and plays a crucial role in wave propagation. In this paper, we consider the singular limits of a linear system with active and inactive cells together with bacterial population dynamics. Eventually, we see that if there are no chemotactic dynamics in the system, we only obtain a monotone traveling wave. This is evidence that chemotaxis dynamics are needed even if population growth is included in the system.</description><subject>Analysis</subject><subject>Bacteria</subject><subject>Cell Biology</subject><subject>Chemotaxis</subject><subject>Diffusion</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical Modelling</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Original Article</subject><subject>Population dynamics</subject><subject>Population growth</subject><subject>Simulation of Biological Systems in memory of Masayasu Mimura</subject><subject>Traveling waves</subject><subject>Wave propagation</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEYRYMotlb_gAsZcONmNI_JC1dan1DURcVlyMwkdco0qUlH8N8bO1XBhYuQD3Lu_cIB4BDBUwQhP4sIUSJyiEkOEUoT2QJDRDHOJYN4GwwhlDgXuIADsBfjHKaQJHIXDAiTHAkphuD8wbu2cUaH7KqxtouNd5n1IbvU1cqERrfZNOh3k5hZ9pKG7OnVOL9Ix-2DHavbaA429wg831xPx3f55PH2fnwxySuC2SrHJSmKAteaSyMKQjDVtDTW1IxxoW2pIUWScQ2FZLKWlkpOcV3QSuAa19aSETjpe5fBv3UmrtSiiZVpW-2M76LCXCKejFCW0OM_6Nx3waXfrSlWyLQsUbinquBjDMaqZWgWOnwoBNWXWtWrVUmtWqtVJIWONtVduTD1T-TbZQJID8T05GYm_O7-p_YTpSOCRg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Kim, Yong-Jung</creator><creator>Mimura, Masayasu</creator><creator>Yoon, Changwook</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0200-9618</orcidid></search><sort><creationdate>20230501</creationdate><title>Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon</title><author>Kim, Yong-Jung ; Mimura, Masayasu ; Yoon, Changwook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Bacteria</topic><topic>Cell Biology</topic><topic>Chemotaxis</topic><topic>Diffusion</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical Modelling</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Original Article</topic><topic>Population dynamics</topic><topic>Population growth</topic><topic>Simulation of Biological Systems in memory of Masayasu Mimura</topic><topic>Traveling waves</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yong-Jung</creatorcontrib><creatorcontrib>Mimura, Masayasu</creatorcontrib><creatorcontrib>Yoon, Changwook</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yong-Jung</au><au>Mimura, Masayasu</au><au>Yoon, Changwook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>85</volume><issue>5</issue><spage>35</spage><epage>35</epage><pages>35-35</pages><artnum>35</artnum><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher–KPP equation. For this reason, the Keller–Segel equations are widely used for bacterial waves. Note that the Keller–Segel equations do not contain the population dynamics of bacteria, but the population of bacteria multiplies and plays a crucial role in wave propagation. In this paper, we consider the singular limits of a linear system with active and inactive cells together with bacterial population dynamics. Eventually, we see that if there are no chemotactic dynamics in the system, we only obtain a monotone traveling wave. This is evidence that chemotaxis dynamics are needed even if population growth is included in the system.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36971898</pmid><doi>10.1007/s11538-023-01138-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0200-9618</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2023-05, Vol.85 (5), p.35-35, Article 35 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_2791710056 |
source | Springer Nature |
subjects | Analysis Bacteria Cell Biology Chemotaxis Diffusion Life Sciences Mathematical analysis Mathematical and Computational Biology Mathematical Concepts Mathematical Modelling Mathematics Mathematics and Statistics Models, Biological Original Article Population dynamics Population growth Simulation of Biological Systems in memory of Masayasu Mimura Traveling waves Wave propagation |
title | Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Diffusion%20for%20Bacterial%20Traveling%20Wave%20Phenomenon&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Kim,%20Yong-Jung&rft.date=2023-05-01&rft.volume=85&rft.issue=5&rft.spage=35&rft.epage=35&rft.pages=35-35&rft.artnum=35&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-023-01138-3&rft_dat=%3Cproquest_cross%3E2791649051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-2b34442da79e843325a5befed6678afba051967a08969d9f59752d45c82d2dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791649051&rft_id=info:pmid/36971898&rfr_iscdi=true |