Loading…
Hot-wire photonics: materials, science, and technology
The prospect of an integrated photonic technology has fueled an effort to understand the optical properties and to gauge the photonic engineering potential of hydrogenated amorphous silicon-based materials. Of particular interest for photonic engineering is the tunable range of the refractive index...
Saved in:
Published in: | Thin solid films 2003-04, Vol.430 (1), p.278-282 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The prospect of an integrated photonic technology has fueled an effort to understand the optical properties and to gauge the photonic engineering potential of hydrogenated amorphous silicon-based materials. Of particular interest for photonic engineering is the tunable range of the refractive index in amorphous silicon and the fast and slow light induced optical changes. The advance of photonic-engineered amorphous silicon technology requires an investigation into the relationships among fabrication processes, material properties, and the interrelations among the various optically important parameters. Here, the experimental investigation into H-implant refractive engineered amorphous silicon materials is detailed. Interestingly, the H-implant can interact with the amorphous structure to produce compacting of the structure, which may indicate refractive index increase. In addition, the evolving prospects for an amorphous silicon-based photonic technology will be up-dated. Waveguide-based light valve structures for the further scientific investigation of light induced refractive index change in amorphous silicon and technological applications are described. |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/S0040-6090(03)00134-2 |