Loading…

Hot-wire photonics: materials, science, and technology

The prospect of an integrated photonic technology has fueled an effort to understand the optical properties and to gauge the photonic engineering potential of hydrogenated amorphous silicon-based materials. Of particular interest for photonic engineering is the tunable range of the refractive index...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2003-04, Vol.430 (1), p.278-282
Main Authors: Fortmann, C.M., Mahan, A.H., Ward, Scott, Anderson, W.A., Tonucci, R., Hata, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The prospect of an integrated photonic technology has fueled an effort to understand the optical properties and to gauge the photonic engineering potential of hydrogenated amorphous silicon-based materials. Of particular interest for photonic engineering is the tunable range of the refractive index in amorphous silicon and the fast and slow light induced optical changes. The advance of photonic-engineered amorphous silicon technology requires an investigation into the relationships among fabrication processes, material properties, and the interrelations among the various optically important parameters. Here, the experimental investigation into H-implant refractive engineered amorphous silicon materials is detailed. Interestingly, the H-implant can interact with the amorphous structure to produce compacting of the structure, which may indicate refractive index increase. In addition, the evolving prospects for an amorphous silicon-based photonic technology will be up-dated. Waveguide-based light valve structures for the further scientific investigation of light induced refractive index change in amorphous silicon and technological applications are described.
ISSN:0040-6090
1879-2731
DOI:10.1016/S0040-6090(03)00134-2