Loading…

On the dominant role of crack closure on fatigue crack growth modeling

Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d a/d N is primarily dependent on Δ K eff= K max− K op, not on Δ K. But this ass...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fatigue 2003-09, Vol.25 (9), p.843-854
Main Authors: Meggiolaro, Marco Antonio, de Castro, Jaime Tupiassú Pinho
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3
cites
container_end_page 854
container_issue 9
container_start_page 843
container_title International journal of fatigue
container_volume 25
creator Meggiolaro, Marco Antonio
de Castro, Jaime Tupiassú Pinho
description Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d a/d N is primarily dependent on Δ K eff= K max− K op, not on Δ K. But this assumption would imply that the normal practice of using d a/d N×Δ K curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an increase in Δ K eff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed.
doi_str_mv 10.1016/S0142-1123(03)00132-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27918425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112303001324</els_id><sourcerecordid>27918425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchF0cNqPvYjexIpVoVCD-o5ZJPZNrpNarKr-O9NbdGjw8DAzDPzMi9Cp5RcUULL6ydCc5ZRyvgF4ZeEUM6yfA-NqKjqjOcF20ejX-QQHcX4SgipSVWM0HTucL8EbPzKOuV6HHwH2LdYB6XfsO58HEJqONyq3i4G2A0WwX_2S7zyBjrrFsfooFVdhJNdHaOX6d3z5CGbze8fJ7ezTPNS9JlWLa0qqqlJwXTNmgpA1LzSZVEaXnJllNCl4IwRyBmrW9EYyliTA3DSGD5G59u76-DfB4i9XNmooeuUAz9EyaqaipwVCSy2oA4-xgCtXAe7UuFLUiI3rskf1-TGEklSblyTedo72wmoqFXXBuW0jX_LBacJFYm72XKQvv2wEGTUFpwGYwPoXhpv_1H6BvK8gJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27918425</pqid></control><display><type>article</type><title>On the dominant role of crack closure on fatigue crack growth modeling</title><source>ScienceDirect Journals</source><creator>Meggiolaro, Marco Antonio ; de Castro, Jaime Tupiassú Pinho</creator><creatorcontrib>Meggiolaro, Marco Antonio ; de Castro, Jaime Tupiassú Pinho</creatorcontrib><description>Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d a/d N is primarily dependent on Δ K eff= K max− K op, not on Δ K. But this assumption would imply that the normal practice of using d a/d N×Δ K curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an increase in Δ K eff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/S0142-1123(03)00132-4</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Crack closure ; Exact sciences and technology ; Fatigue crack growth ; Fatigue, brittleness, fracture, and cracks ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Metals. Metallurgy ; Physics ; Sequence effects ; Thickness effect</subject><ispartof>International journal of fatigue, 2003-09, Vol.25 (9), p.843-854</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15310018$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Meggiolaro, Marco Antonio</creatorcontrib><creatorcontrib>de Castro, Jaime Tupiassú Pinho</creatorcontrib><title>On the dominant role of crack closure on fatigue crack growth modeling</title><title>International journal of fatigue</title><description>Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d a/d N is primarily dependent on Δ K eff= K max− K op, not on Δ K. But this assumption would imply that the normal practice of using d a/d N×Δ K curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an increase in Δ K eff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crack closure</subject><subject>Exact sciences and technology</subject><subject>Fatigue crack growth</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Sequence effects</subject><subject>Thickness effect</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchF0cNqPvYjexIpVoVCD-o5ZJPZNrpNarKr-O9NbdGjw8DAzDPzMi9Cp5RcUULL6ydCc5ZRyvgF4ZeEUM6yfA-NqKjqjOcF20ejX-QQHcX4SgipSVWM0HTucL8EbPzKOuV6HHwH2LdYB6XfsO58HEJqONyq3i4G2A0WwX_2S7zyBjrrFsfooFVdhJNdHaOX6d3z5CGbze8fJ7ezTPNS9JlWLa0qqqlJwXTNmgpA1LzSZVEaXnJllNCl4IwRyBmrW9EYyliTA3DSGD5G59u76-DfB4i9XNmooeuUAz9EyaqaipwVCSy2oA4-xgCtXAe7UuFLUiI3rskf1-TGEklSblyTedo72wmoqFXXBuW0jX_LBacJFYm72XKQvv2wEGTUFpwGYwPoXhpv_1H6BvK8gJ0</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Meggiolaro, Marco Antonio</creator><creator>de Castro, Jaime Tupiassú Pinho</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030901</creationdate><title>On the dominant role of crack closure on fatigue crack growth modeling</title><author>Meggiolaro, Marco Antonio ; de Castro, Jaime Tupiassú Pinho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crack closure</topic><topic>Exact sciences and technology</topic><topic>Fatigue crack growth</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Sequence effects</topic><topic>Thickness effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meggiolaro, Marco Antonio</creatorcontrib><creatorcontrib>de Castro, Jaime Tupiassú Pinho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meggiolaro, Marco Antonio</au><au>de Castro, Jaime Tupiassú Pinho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the dominant role of crack closure on fatigue crack growth modeling</atitle><jtitle>International journal of fatigue</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>25</volume><issue>9</issue><spage>843</spage><epage>854</epage><pages>843-854</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d a/d N is primarily dependent on Δ K eff= K max− K op, not on Δ K. But this assumption would imply that the normal practice of using d a/d N×Δ K curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an increase in Δ K eff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0142-1123(03)00132-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2003-09, Vol.25 (9), p.843-854
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_miscellaneous_27918425
source ScienceDirect Journals
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Crack closure
Exact sciences and technology
Fatigue crack growth
Fatigue, brittleness, fracture, and cracks
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Metals. Metallurgy
Physics
Sequence effects
Thickness effect
title On the dominant role of crack closure on fatigue crack growth modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20dominant%20role%20of%20crack%20closure%20on%20fatigue%20crack%20growth%20modeling&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Meggiolaro,%20Marco%20Antonio&rft.date=2003-09-01&rft.volume=25&rft.issue=9&rft.spage=843&rft.epage=854&rft.pages=843-854&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/S0142-1123(03)00132-4&rft_dat=%3Cproquest_cross%3E27918425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27918425&rft_id=info:pmid/&rfr_iscdi=true