Loading…
On the dominant role of crack closure on fatigue crack growth modeling
Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d a/d N is primarily dependent on Δ K eff= K max− K op, not on Δ K. But this ass...
Saved in:
Published in: | International journal of fatigue 2003-09, Vol.25 (9), p.843-854 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3 |
---|---|
cites | |
container_end_page | 854 |
container_issue | 9 |
container_start_page | 843 |
container_title | International journal of fatigue |
container_volume | 25 |
creator | Meggiolaro, Marco Antonio de Castro, Jaime Tupiassú Pinho |
description | Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d
a/d
N is primarily dependent on Δ
K
eff=
K
max−
K
op, not on Δ
K. But this assumption would imply that the normal practice of using d
a/d
N×Δ
K curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly
non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an
increase in Δ
K
eff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed. |
doi_str_mv | 10.1016/S0142-1123(03)00132-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27918425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112303001324</els_id><sourcerecordid>27918425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchF0cNqPvYjexIpVoVCD-o5ZJPZNrpNarKr-O9NbdGjw8DAzDPzMi9Cp5RcUULL6ydCc5ZRyvgF4ZeEUM6yfA-NqKjqjOcF20ejX-QQHcX4SgipSVWM0HTucL8EbPzKOuV6HHwH2LdYB6XfsO58HEJqONyq3i4G2A0WwX_2S7zyBjrrFsfooFVdhJNdHaOX6d3z5CGbze8fJ7ezTPNS9JlWLa0qqqlJwXTNmgpA1LzSZVEaXnJllNCl4IwRyBmrW9EYyliTA3DSGD5G59u76-DfB4i9XNmooeuUAz9EyaqaipwVCSy2oA4-xgCtXAe7UuFLUiI3rskf1-TGEklSblyTedo72wmoqFXXBuW0jX_LBacJFYm72XKQvv2wEGTUFpwGYwPoXhpv_1H6BvK8gJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27918425</pqid></control><display><type>article</type><title>On the dominant role of crack closure on fatigue crack growth modeling</title><source>ScienceDirect Journals</source><creator>Meggiolaro, Marco Antonio ; de Castro, Jaime Tupiassú Pinho</creator><creatorcontrib>Meggiolaro, Marco Antonio ; de Castro, Jaime Tupiassú Pinho</creatorcontrib><description>Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d
a/d
N is primarily dependent on Δ
K
eff=
K
max−
K
op, not on Δ
K. But this assumption would imply that the normal practice of using d
a/d
N×Δ
K curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly
non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an
increase in Δ
K
eff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/S0142-1123(03)00132-4</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Crack closure ; Exact sciences and technology ; Fatigue crack growth ; Fatigue, brittleness, fracture, and cracks ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Metals. Metallurgy ; Physics ; Sequence effects ; Thickness effect</subject><ispartof>International journal of fatigue, 2003-09, Vol.25 (9), p.843-854</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15310018$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Meggiolaro, Marco Antonio</creatorcontrib><creatorcontrib>de Castro, Jaime Tupiassú Pinho</creatorcontrib><title>On the dominant role of crack closure on fatigue crack growth modeling</title><title>International journal of fatigue</title><description>Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d
a/d
N is primarily dependent on Δ
K
eff=
K
max−
K
op, not on Δ
K. But this assumption would imply that the normal practice of using d
a/d
N×Δ
K curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly
non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an
increase in Δ
K
eff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crack closure</subject><subject>Exact sciences and technology</subject><subject>Fatigue crack growth</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Sequence effects</subject><subject>Thickness effect</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchF0cNqPvYjexIpVoVCD-o5ZJPZNrpNarKr-O9NbdGjw8DAzDPzMi9Cp5RcUULL6ydCc5ZRyvgF4ZeEUM6yfA-NqKjqjOcF20ejX-QQHcX4SgipSVWM0HTucL8EbPzKOuV6HHwH2LdYB6XfsO58HEJqONyq3i4G2A0WwX_2S7zyBjrrFsfooFVdhJNdHaOX6d3z5CGbze8fJ7ezTPNS9JlWLa0qqqlJwXTNmgpA1LzSZVEaXnJllNCl4IwRyBmrW9EYyliTA3DSGD5G59u76-DfB4i9XNmooeuUAz9EyaqaipwVCSy2oA4-xgCtXAe7UuFLUiI3rskf1-TGEklSblyTedo72wmoqFXXBuW0jX_LBacJFYm72XKQvv2wEGTUFpwGYwPoXhpv_1H6BvK8gJ0</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Meggiolaro, Marco Antonio</creator><creator>de Castro, Jaime Tupiassú Pinho</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030901</creationdate><title>On the dominant role of crack closure on fatigue crack growth modeling</title><author>Meggiolaro, Marco Antonio ; de Castro, Jaime Tupiassú Pinho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crack closure</topic><topic>Exact sciences and technology</topic><topic>Fatigue crack growth</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Sequence effects</topic><topic>Thickness effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meggiolaro, Marco Antonio</creatorcontrib><creatorcontrib>de Castro, Jaime Tupiassú Pinho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meggiolaro, Marco Antonio</au><au>de Castro, Jaime Tupiassú Pinho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the dominant role of crack closure on fatigue crack growth modeling</atitle><jtitle>International journal of fatigue</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>25</volume><issue>9</issue><spage>843</spage><epage>854</epage><pages>843-854</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth d
a/d
N is primarily dependent on Δ
K
eff=
K
max−
K
op, not on Δ
K. But this assumption would imply that the normal practice of using d
a/d
N×Δ
K curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly
non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an
increase in Δ
K
eff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0142-1123(03)00132-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2003-09, Vol.25 (9), p.843-854 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_miscellaneous_27918425 |
source | ScienceDirect Journals |
subjects | Applied sciences Condensed matter: structure, mechanical and thermal properties Crack closure Exact sciences and technology Fatigue crack growth Fatigue, brittleness, fracture, and cracks Mechanical and acoustical properties of condensed matter Mechanical properties of solids Metals. Metallurgy Physics Sequence effects Thickness effect |
title | On the dominant role of crack closure on fatigue crack growth modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20dominant%20role%20of%20crack%20closure%20on%20fatigue%20crack%20growth%20modeling&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Meggiolaro,%20Marco%20Antonio&rft.date=2003-09-01&rft.volume=25&rft.issue=9&rft.spage=843&rft.epage=854&rft.pages=843-854&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/S0142-1123(03)00132-4&rft_dat=%3Cproquest_cross%3E27918425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-caf1771c1dddd2c92b7ee8937c656d363ada8c683220e4229f8bd122b4ee30bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27918425&rft_id=info:pmid/&rfr_iscdi=true |