Loading…

Preparation and properties of APPSSQ-like/polyimide hybrid composites

Hydrolysis and condensation proceeded to generate 3‐aminopropyl polysilsesquioxane‐like (APPSSQ‐like) particles from 3‐aminopropyl triethoxysilane. An APPSSQ‐like particle includes two domains: crosslinking SiOSi networks inside and 3‐aminopropyl groups outside the particle. The APPSSQ‐like/polyim...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2003-09, Vol.89 (10), p.2865-2874
Main Authors: Hsueh, Huai-Bin, Chen, Chuh-Yung, Wang, Cheng-Chien, Chu, Tzong-Jeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrolysis and condensation proceeded to generate 3‐aminopropyl polysilsesquioxane‐like (APPSSQ‐like) particles from 3‐aminopropyl triethoxysilane. An APPSSQ‐like particle includes two domains: crosslinking SiOSi networks inside and 3‐aminopropyl groups outside the particle. The APPSSQ‐like/polyimide (APPSSQ‐like/PI) hybrid composites were prepared from a solution of poly(amic acid) (PAA, polyimide precursor) and APPSSQ‐like particles using N,N‐dimethylacetamide as a solvent. Scanning electron microscopy (SEM) showed that the APPSSQ particle sizes were about 100 nm, and there was no obvious phase separation between the APPSSQ‐like particles and the PI matrix in the fracture surfaces of the hybrid films. Owing to the highly crosslinked SiOSi networks inside the APPSSQ‐like particles, the APPSSQ‐like/PI hybrid composites possessed desired properties such as improved thermal resistance and reduced coefficients of thermal expansion (CTE). The presence of covalent bonds between the APPSSQ‐like particles and the PI molecules improved the compatibility between these two components. Thus, the tensile strength increased with the APPSSQ‐like content, and the elongation at break also slightly increased with the APPSSQ‐like content. The initial tensile and storage moduli of the APPSSQ‐like/PI hybrid composites increased with the APPSSQ‐like content, which indicates that the mechanical properties of these hybrid composites were enhanced by the incorporation of the APPSSQ‐like content in the PI matrix. Furthermore, the glass transition temperatures of these composites increased with the APPSSQ‐like content because the adhesion between the APPSSQ‐like particles and the PI molecules restricts the PI chains' mobility. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2865–2874, 2003
ISSN:0021-8995
1097-4628
DOI:10.1002/app.12569